• Title/Summary/Keyword: Dry vacuum pump

Search Result 42, Processing Time 0.017 seconds

Development of Cellulosic Fiber Filter Using Replacement Liquid in Water-Swollen Fiber with Non-Polar Solvent (Non-Polar 물질 수분치환에 의한 종이필터 개발)

  • Kim, Kwang Soo;Ahn, Kwang Ho;Park, Jae Ro;Kim, Hyun Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.743-748
    • /
    • 2013
  • The purposes of this study are to prepare Hanji fiber-filter sheets using replacement liquid in water-swollen fiber with non-polar solvent such as ethanol, methanol and pentane. The experiments were studied on the selection of optimal non-polar solvent and the optimal drying method for wetted fiber and then were to know physicochemical characteristics of prepared Hanji fiber-filter sheet. The Ethanol as liquid changer in water-swollen fiber was excellent solvent and the optimal drying method for them was freeze drying served with vacuum pump. The bulk density and porosity of prepared fiber sheet from freeze dryer were 0.11-0.13 g/mL, half of natural dried fiber sheet, and 90%, respectively. The results of SEM observation for the fiber sheet prepared with natural drying or heating drying were shown very close structure of fiber wall in dry state. However, the freeze drying sheet were shown the open structure. So, the head loss of freeze drying sheet was very lower than natural drying and heating drying sheets. From the results of BTEX removal experiments, the sheets dried at water wetted condition was shown more higher efficiency than the fiber sheets dried at solvent wetted condition.

Dry etching of polycarbonate using O2/SF6, O2/N2 and O2/CH4 plasmas (O2/SF6, O2/N2와 O2/CH4 플라즈마를 이용한 폴리카보네이트 건식 식각)

  • Joo, Y.W.;Park, Y.H.;Noh, H.S.;Kim, J.K.;Lee, S.H.;Cho, G.S.;Song, H.J.;Jeon, M.H.;Lee, J.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • We studied plasma etching of polycarbonate in $O_2/SF_6$, $O_2/N_2$ and $O_2/CH_4$. A capacitively coupled plasma system was employed for the research. For patterning, we used a photolithography method with UV exposure after coating a photoresist on the polycarbonate. Main variables in the experiment were the mixing ratio of $O_2$ and other gases, and RF chuck power. Especially, we used only a mechanical pump for in order to operate the system. The chamber pressure was fixed at 100 mTorr. All of surface profilometry, atomic force microscopy and scanning electron microscopy were used for characterization of the etched polycarbonate samples. According to the results, $O_2/SF_6$ plasmas gave the higher etch rate of the polycarbonate than pure $O_2$ and $SF_6$ plasmas. For example, with maintaining 100W RF chuck power and 100 mTorr chamber pressure, 20 sccm $O_2$ plasma provided about $0.4{\mu}m$/min of polycarbonate etch rate and 20 sccm $SF_6$ produced only $0.2{\mu}m$/min. However, the mixed plasma of 60 % $O_2$ and 40 % $SF_6$ gas flow rate generated about $0.56{\mu}m$ with even low -DC bias induced compared to that of $O_2$. More addition of $SF_6$ to the mixture reduced etch of polycarbonate. The surface roughness of etched polycarbonate was roughed about 3 times worse measured by atomic force microscopy. However examination with scanning electron microscopy indicated that the surface was comparable to that of photoresist. Increase of RF chuck power raised -DC bias on the chuck and etch rate of polycarbonate almost linearly. The etch selectivity of polycarbonate to photoresist was about 1:1. The meaning of these results was that the simple capacitively coupled plasma system can be used to make a microstructure on polymer with $O_2/SF_6$ plasmas. This result can be applied to plasma processing of other polymers.