• Title/Summary/Keyword: Dry river

Search Result 451, Processing Time 0.026 seconds

Urban Runoff and Water Quality Models (도시유역에서의 유출 및 수질해석 모형)

  • Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.709-725
    • /
    • 1998
  • The characteristics of storm and water quality are investigated based on the measuring data of the test river, the Hongje. the water quality of the test river is generally good comparing to other urban rivers in Seoul, because of the interception of sewer flow. But this system makes the river dry up for 3-4 months in winter. On the other hand, in rainy period the storm from the combined sewer system causes rapid increasing pollutants loads. In order to simulate the urban storm and water quality of the trest basin, the models such as SWMM, ILLUDAS, STORM, HEC-1 were applied and the results are compared in its applicability and accuracy aspects. All models discussed here have shown good results and it seems that SUMM is the most effective model in simulating both quantity and quality. Also, regression relations between the water quantity and quality were derived and their applicabilities were discussed. This regression model is a simple effective tool for estimating the pollutant loads in the rainy period, but if the amount of discharge is bigger than measuring range of raw data, the accuracy becomes poor. This model could be supplemented by expanding the range of collecting data and introducing the river characteristics. The HEC-1 would be anther effective model to simulate storm runoff of a river basin including urban area.

  • PDF

Development of Nonpoint Sources Runoff Load Estimation Model Equations for the Vineyard Area (포도밭에 대한 비점오염물질 유출량 추정 모델식 개발)

  • Yoon, Young-Sam;Kwon, Hun-Gak;Yi, Youn-Jung;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.907-915
    • /
    • 2010
  • Agriculture nonpoint pollution source is a significant contributor to water quality degradation. To establish effective water quality control policy, environpolitics establishment person must be able to estimate nonpoint source loads to lakes and streams. To meet this need for orchard area, we investigated a real rainfall runoff phenomena about it. We developed nonpoint source runoff estimation models for vineyard area that has lots of fertilizer, compost specially between agricultural areas. Data used in nonpoint source estimation model gained from real measuring runoff loads and it surveyed for two years(2008-2009 year) about vineyard. Nonpoint source runoff loads estimation models were composed of using independent variables(rainfall, storm duration time(SDT), antecedent dry weather period(ADWP), total runoff depth(TRD), average storm intensity(ASI), average runoff intensity(ARI)). Rainfall, total runoff depth and average runoff intensity among six independent variables were specially high related to nonpoint source runoff loads such as BOD, COD, TN, TP, TOC and SS. The best regression model to predict nonpoint source runoff load was Model 6 and regression factor of all water quality items except for was $R^2=0.85$.

Numerical Analysis of Flow and Bed Changes due to Tributary Inflow Variation at the Confluence of the Namhan River and the Geumdang Stream (남한강과 금당천 합류부 구간에서의 지류 유입유량 변화에 따른 흐름특성 및 하상변동 수치모의)

  • Ji, Un;Jang, Eun Kyung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1027-1037
    • /
    • 2014
  • Flow and bed changes due to tributary inflow variation at the confluence of the Namhan River and the Geumdang Stream were analyzed in this study using a two-dimensional numerical model. As a result of the numerical analysis, the velocity downstream of the confluence was greater than the velocity upstream of the confluence in the main channel regardless of the magnitude of tributary inflow. However, as tributary discharge increased, the channel erosion was accelerated and the dry area was produced at the tributary. Due to the bed erosion at the tributary, sediment transport was increased and the eroded sediments were deposited in the confluence area. The deposition in the confluence area changed the flow direction at the main channel to the left side and the localized flow eroded the channel bed at the left side. Therefore, it is expected that bank failure due to continuous bed degradation is possible in this area.

The Distribution of Plant Communities on Water Table along the Bukhan Riverside in Chun-seong (춘성지구 북한강유역의 지하수위에 따른 식물군락의 운적적 변화)

  • 이성규
    • Journal of Plant Biology
    • /
    • v.16 no.3_4
    • /
    • pp.1-6
    • /
    • 1973
  • The distribution of plant communities along the Bukhan Riverside in Chun-seong was studied by means of the methods fo Curtis and Pattern. The communities were arranged in a single-dimensioned ordination on the basis of the importance values of the persistent species. Leading dominant species, form the 'low' level to the 'high' levels of the ordination gradient, were Phalaris arundinacea, Salix gilgiana, Artemisia feddei, Zoysia japonica, Pennisetum japonicum, and Arundinella hirta. These species from a continuum from the river to the dry grassland depending upon available soil-moisture. Standing crops in terms of dry weight and the nitrogen content of the above-ground parts of these species showed a good relationship with gradients of available soil-moisture.

  • PDF

Effect of Coarse Materials on Compaction of Soil (조립재가 흙의 다짐에 미치는 영향)

  • 윤충섭;김호일;김현태
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.84-95
    • /
    • 1991
  • The compaction ratio of the field dry density to the maximum dry density is generally adopted as the index of quality control for embankment of earthfill structures such as Earth Dam, Sea Dike, River Bank and Road. In case of coarse materials are included in the earth material, the compaction ratio will be varied in wide range since the dry density is influenced by quantity of coarse material in the soil. The treatment for the coarse material should be controlled carefully in testing. In this study, the compaction characteristics of the soil contained the coarse materials were researched and calibration of the suitability of field quality control methods were carried out. 28 Samples were made of clay(CL) and sandy soil (SM) mixed with gravel whose content were 0, 4, 6, 8, 10, 12, 15, 20, 25, 30, 35, 40, 45, and 60% in Weight. The compaction characteristics depending on the coarse material content were analysed through 4 types of compaction tests which are A-1, B-i, C-i and D-1. The adjusting coefficients for density and moisture content namely a and ${\beta}$ respectively were proposed in order to consider the effects depending on content of the coarse materials. The test methods to control reasonably and promptly the quality of earthfill were proposed after analysing the ranges of possible errors on the relative compaction ratio between laboratory compaction methods and field density testing methods.

  • PDF

Water Balance and Flushing Time in the Restricted Indian River Lagoon (IRL), Florida USA

  • Kim, Young-Taeg
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.75-87
    • /
    • 2003
  • The water balance calculation in the IRL shows that fresh groundwater discharge is the primary factor, with surface runoff from gaged and ungaged areas as the second freshwater contributor. Precipitation and evaporation are almost in balance fer the entire IRL. Due to high freshwater discharge from ground-water, the annual net flow is outward from the IRL to the continental shelf of the Atlantic Ocean resulting in a relatively short flushing time, denoted as $T_{0.5}$ (50% flushing time) and $T_{0.99}$ (99% flushing time). $T_{0.5}$, and. $T_{0.99}$ without a tidal effect in the Northern IRL are 17 and 114 days, respectively, during the dry season. During the wet season, they are 10 and 65 days, respectively. Tidal flushing effects are considered in central IRL due to the proximity to Sebastian Inlet. In the Northern Central zone during dry season, $T_{0.5}$, and. $T_{0.99}$ are 6 and 43 days, respectively and during the wet season 5 and 33 days. In the Southern Central zone they are 2 and 16 days for the dry season,2 and 15 days for the wet season. High groundwater seepage into the IRL is considered to be a positive effect in maintaining relatively good water quality condition even with few narrow inlets.

A Study on the Variation of Water Quality and the Evaluation of Target Water Quality Using LDC in Major Tributaries of Nakdong River Basin (낙동강수계 주요 지류의 수질특성변화 및 LDC를 이용한 목표수질 평가에 관한 연구)

  • Lee, Sangsoo;Kang, Junmo;Park, Hyerim;Kang, Jeonghun;Kim, Shin;Kim, Jin-pil;Kim, Gyeonghoon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.521-534
    • /
    • 2020
  • In this study, the variation of water quality was analyzed for six sites in major tributaries of the Nakdong River Basin. Standard-FDC (Flow Duration Curve) was developed using PM (Percentile Method), one of the statistical FDC estimation methods. The LDC (Load Duration Curve) was obtained using the developed FDC. The current method and the LDC evaluation method were compared and analyzed to evaluate the achievement of TWQ (Target Water Quality). Regarding the monthly flow rate variation, the five sites showed the distribution of the lowest flow rate between May and June, indicating a high probability of dry weathering of the streams. The variation of water quality confirmed the vulnerable timing of flow rate in each site, and it is therefore deemed necessary to plan to reduce T-P and TOC. A comparison and evaluation of TWQ showed that there was a difference between the TWQ values achieved by the two techniques. In addition, the margin ratio to the 50% excess ratio can be found in the LDC evaluation. The results of the LDC evaluation by section and by month showed whether or not the water quality was exceeded by flow conditions, along with the vulnerable sections and timing. Accordingly, it is judged that this method can be used for water quality management in TMDLs (Total Maximum Daily Loads).

Isolation and Identification of a Photosynthetic Bacterium Containing $Q_{10}$ ($Q_{10}$ 함유 광합성세균의 분리 및 동정)

  • Jeong, Soo Kyoung;Kim, Joong Kyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.120-122
    • /
    • 2007
  • A $Q_{10}$-producing photosynthetic bacterium was isolated from the silt at Nakdong river. The isolate had 1.55 mg of $Q_{10}$ per gram of dry cell. By the 16s-rDNA sequence analysis, the isolate was found to be Rhodobacter sphaeroids with 100% similarity (Genbank Accession No.=AM696701).

  • PDF

Environmental Studies in the Lower Part of the Han River IIX. Assessment for Water Quality Using Epilithic Diatom Assemblage Index to Organic Water Pollution (DAIpo) in Dry Season (한강하류의 환경학적 연구 IIX. 갈수기 부착돌말류의 유기오탁지수 (DAIpo index)에 의한 수질 평가)

  • Jung, Seung-Won;Park, Sung-Hwan;Lee, Jin-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.233-239
    • /
    • 2008
  • In order to access the water quality using epilithic diatom assemblage index to organic water pollution (DAIpo) in the lower part of the Han River, the diatom samples were collected biweekly at 2 stations by means of artificial substrates of ceramic tiles from February, 2004 to February, 2005. A total of 60 taxa, representing 18 genera 51 species, 7 varieties and 2 forms, of diatoms were identified in the present study. Dominant percentages of Aulacoseria granulata and Melosira varians (Indifferent taxa) were 22.76$\sim$30.30% and 17.44$\sim$34.78%, respectively, and Nitzschia palea (Saprophilous taxa) were 15.00$\sim$31.76% at St. 1. In St. 2, the percentages of dominant species, N. palea, were 19.86$\sim$58.20%. Average DAIpo index was 40.6 in St. 1 and 32.1 in St. 2, and the saprobic level was shown $\beta$-mesosaprobic in the lower part of the Han River. It is suggested that epilithic diatoms as bioindicators and a DAIpo index indicate useful for analy-zing assessment of the water quality.

Problems of lake water management in Korea (한국의 호수 수질관리의 문제점)

  • 김범철;전만식;김윤희
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2003.10a
    • /
    • pp.105-126
    • /
    • 2003
  • In Korea most of annual rainfall is concentrated in several episodic heavy rains during the season of summer monsoon and typhoon. Because of uneven rainfall distribution many dams have been constructed in order to secure water supply in dry seasons. The Han River system has the most dams among Korean rivers, and the river is a series of dams now. Reservoirs need different strategy of water quality control from river water. Autochthonous organic matter and phosphorus should be the major target to be controlled in lakes. In this Paper some problems are discussed that makes efforts of water quality improvement ineffective in lakes of Korea, even after the substantial investment to wastewater treatment facilities.1) Phosphorus is the key factor controlling eutrophication of lakes and the reduction ofphosphors should be the major target of water treatment. However, water quality management strategy in Korea is still stream-oriented, and focused on BOD removal from sewage. Phosphorus removal efficiency remains as low as 10-30%, because biological treatment is adopted for both secondary treatment and advanced treatment. The standard for TP concentration of the sewage treatment plant effluent is 6 mgP/l in most of regions, and 2 mg/l in enforced region near metropolitan water intake point. TP in the effluents of sewage treatment plants are usually 1-2 mg/1, and most of plants meet the effluent regulation without a further phosphorus removal process. The generous TP standard for effluents discourages further efforts to improve phosphorus removal efficiency of sewage treatment. Considering that TP standard for the effluent is below 0.1 mg/l in some countries, it should be amended to below 0.1 mg/l in Korea, especially in the watershed of large lakes.2) Urban runoff and combined sewer overflow are not treated, even though their total loading into lakes can be comparable to municipal sewage discharges on dry days. Chemical coagulation and rapid settling might be the solution to urban runoff in regard of intermittent operation on only rainy days.3) Aggregated precipitation in Korea that is concentrated on several episodic heavyrains per year causes a large amount of nonpoint source pollution loading into lakes. It makes the treatment of nonpoint source discharge by methods of other countries of even rain pattern, such as retention pond or artificial wetland, impractical in Korea.4) The application rate of fertilizers in Korea is ten times as high as the average ofOECD countries. The total manure discharge from animal farming is thought to be over the capacity of soil treatment in Korea. Even though large portion of manure is composted for organic fertilizer, a lot of nutrients and organic matter emanates from organic compost. The reduction of application rate and discharge rate of phosphorus from agricultural fields should be encouraged by incentives and regulations.5) There is a lot of vegetable fields with high slopes in the upstream region of the HanRiver. Soil erosion is severe due to high slopes, and fertilizer is discharged in the form of adsorbed phosphorus on clay surface. The reduction of soil erosion in the upland area should be the major preventive policy for eutrophication. Uplands of high slope must be recovered to forest, and eroded gullies should be reformed into grass-buffered natural streams which are wider and resistant to bank erosion.

  • PDF