• Title/Summary/Keyword: Dry heat

Search Result 919, Processing Time 0.024 seconds

Preparation of Carbon Nanomaterial from the Microbial Cellulose (미생물 셀룰로오스로부터 탄소 나노물질의 제조)

  • Kim Bong Gyun;Sohng Jae Kyung;Liou Kwangkyoung;Lee Hei Chan
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.50-54
    • /
    • 2005
  • Tar is often produced during the carbonization of cellulose that limits the formation fibrous structure of the carbonized sample. This problem was reduced by applying a high temperature $(up\;to\;800{\circ}C)$ during carbonization process. Alternatively, dry cellulose was immersed in toluene and ultrasonicated prior to carbonization. In both cases, complete fibrous structures were not achieved. The formation of tar was reduced by the heat treatment of cellulose in the presence of HCI vapor before carbonization process. Such treatment before carbonization yielded mostly the fibrous structures of the carbonized sample as evident from SEM analysis. Similar results were found when the cellulose was subjected to a heat treatment in an inert condition followed by the removal of tar by the oxidation process prior to the carbonization.

Performance Comparison between Indirect Evaporative Cooler and Regenerative Evaporative Cooler made of Plastic/Paper (플라스틱/종이 재질의 간접 증발 소자와 재생 증발 소자 성능 비교)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.88-98
    • /
    • 2016
  • The Korean summer is hot and humid, and air-conditioners consume considerable amounts of electricity. In such cases, the simultaneous use of indirect evaporative coolers may help reduce the sensible heat and save electricity. In this study, heat transfer and pressure drop characteristics of indirect or regenerative evaporative coolers made from plastic/paper are investigated. The results showed that heat and mass transfer model based on the ${\epsilon}-NTU$ method predicted the indirect evaporation efficiencies, cooling capacities and pressure drops adequately. Both for indirect or regenerative evaporative cooler, the indirect evaporation efficiency increased with increasing dry channel inlet temperature or relative humidity. The indirect evaporation efficiency of the regenerative evaporative cooler was larger than that of the indirect evaporative cooler.

Forecasting the Effect of Global Warming on the Water Temperature and Thermal Stratification in Daecheong Reservoir (지구온난화가 대청호 수온 및 성층구조에 미치는 영향예측)

  • Cha, Yoon Cheol;Chung, Se Woong;Yoon, Sung Wan
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.4
    • /
    • pp.329-343
    • /
    • 2013
  • According to previous studies, the increased air temperature can lead to change of thermal stratification structure of lakes and reservoirs. The changed thermal stratification may result in alteration of materials and energy flow. The objective of this study was to predict the effect of climate change on the water temperature and stratification structure of Daecheong Reservoir, located in Geum River basin of Korea, using a three-dimensional(3D) hydrodynamic model(ELCOM). A long-term(100 years) weather data set provided by the National Institute of Meteorological Research(NIMR) was used for forcing the 3D model. The model was applied to two different hydrological conditions, dry year(2001) and normal year(2004). It means that the effect of air temperature increase was only considered. Simulation results showed that the surface water temperature of the reservoir tend to increase in the future, and the establishment of thermal stratification can occur earlier and prolonged longer. As a result of heat flux analysis, the evaporative heat loss can increase in the future than now and before. However, the convective heat loss and net long wave radiation from water surface decreased due to increased air temperature.

Comparisons of performance and operation characteristics for closed- and open-loop passive containment cooling system design

  • Bang, Jungjin;Jerng, Dong-Wook;Kim, Hangon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2499-2508
    • /
    • 2021
  • Passive containment cooling systems (PCCSs) have been actively studied to improve the inherent safety of nuclear power plants. Hered, we present two concepts, open-loop PCCS (OL-PCCS) and closed-loop PCCS (CL-PCCS), applicable to the PWR with a concrete-type containment. We analyzed the heat-removal performance and flow instability of these PCCS concepts using the GOTHIC code. In both cases, PCCS performance improved when a passive containment cooling heat exchanger (PCCX) was installed in the lower part of the containment building. The OL-PCCS was found to be superior in terms of heat-removal performance. However, in terms of flow instability, the OL-PCCS was more vulnerable than the CL-PCCS. In particular, the possibility of flow instability was higher when the PCCX was installed in the upper part of the containment. Therefore, the installation location of the OL-PCCS should be restricted to minimize flow instability. Conversely, a CL-PCCS can be installed without any positional restriction by adjusting the initial system pressure within the loop, which eliminates flow instability. These results could be used as base data for the thermo-hydraulic evaluation of PCCS in PWR with a large dry concrete-type containment.

Effect of tempering conditions on the tempering behavior and mechanical properties of tempered H13 steel (H13 강의 템퍼링 조건에 따른 템퍼링 거동 및 기계적 물성 효과 )

  • Gi-Hoon Kwon;Byoungho Choi;Yoon-Ho Son;Young-Kook Lee;Kyoungil Moon
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.105-114
    • /
    • 2024
  • Tempering behavior and mechanical properties in AISI H13 steel, quenched and tempered from 300 ℃ to 700 ℃ for different tempering time (1, 2, 5, 10, 20 hr) were quantitatively investigated by scanning electron microscopy (SEM), x-ray diffractometer (XRD), impact test machine, rockwell apparatus, ball-on-disk tester. Under the condition that the tempering time is 2 hours, the hardness increases slightly as the tempering temperature increases, but decreases rapidly when the tempering temperature exceeds 500 ℃, while the impact energy increases in proportion to the tempering temperature. Friction tests were conducted in dry condition with a load of 30 N, and the friction coefficient and wear rate according to tempering conditions were measured to prove the correlation with hardness and microstructure. In addition, primary tempering from 300 ℃ to 700 ℃ was performed at various times to establish a kinetic model to predict hardness under specific tempering conditions.

Color Developing of Hanji Fabrics by Heat Treatment of Persimmon Juice and Shuliang Extract and Mud Dyeing (감물과 서랑 추출물의 열처리와 진흙염색에 의한 한지직물의 색상 발현)

  • Kyunghee Son
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.3
    • /
    • pp.543-562
    • /
    • 2024
  • This study used persimmon juice, shuliang, and mud to develop the color of hanji fabrics. Persimmon juice and shuliang were used to perform single and mixing dyeing with heat treatment using the pad-dry-cure (PDC) method. Next, mud dyeing was performed, and the hanji fabrics dyed with persimmon juice and shuliang were developed into Yellow Red (YR) Munsell colors with very low values and chroma. Through scanning electron microscopy, the persimmon juice and shuliang were observed to be evenly treated on the hanji fabrics using the PDC method. Furthermore, the presence of iron ions in the dyed fabrics was confirmed using inductively coupled plasma-mass spectrometry analysis. The stiffness of the fabrics dyed with persimmon juice was the greatest, while it gradually decreased for the fabrics treated with mixing and mud dyeing. With mixing dyeing, the colorfastness to washing improved to grade 4, whereas with mud dyeing, the colorfastness to alkaline sweat greatly improved to grade 4~4-5. Based on these findings, this study confirmed that it is possible to develop hanji fabrics with differentiated textures and colors while ensuring practical colorfastness through mixing and mud dyeing.

Design and transient analysis of a compact and long-term-operable passive residual heat removal system

  • Wooseong Park;Yong Hwan Yoo;Kyung Jun Kang;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4335-4349
    • /
    • 2023
  • Nuclear marine propulsion has been emerging as a next generation carbon-free power source, for which proper passive residual heat removal systems (PRHRSs) are needed for long-term safety. In particular, the characteristics of unlimited operation time and compact design are crucial in maritime applications due to the difficulties of safety aids and limited space. Accordingly, a compact and long-term-operable PRHRS has been proposed with the key design concept of using both air cooling and seawater cooling in tandem. To confirm its feasibility, this study conducted system design and a transient analysis in an accident scenario. Design results indicate that seawater cooling can considerably reduce the overall system size, and thus the compact and long-term-operable PRHRS can be realized. Regarding the transient analysis, the Multi-dimensional Analysis of Reactor Safety (MARS-KS) code was used to analyze the system behavior under a station blackout condition. Results show that the proposed design can satisfy the design requirements with a sufficient margin: the coolant temperature reached the safe shutdown condition within 36 h, and the maximum cooling rate did not exceed 40 ℃/h. Lastly, it was assessed that both air cooling and seawater cooling are necessary for achieving long-term operation and compact design.

Study on Performance and Analysis of PF Heat Exchanger for Heat Pump Dryer (히트펌프 건조기용 PF 열교환기 성능 및 해석 연구)

  • Kim, Ki-Young;Lee, Seok-Hyun;Kwon, Young-Chul;Chun, Chong-Keun;Park, Sam-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1576-1581
    • /
    • 2013
  • In the present study, the performance of a PF heat exchanger for heat pump dryer was investigated. Capacity and dehumidification amount of the PF heat exchangers(PF1, PF2, PF3) by different inclination angles($0^{\circ}$, $30^{\circ}$, $60^{\circ}$) were studied. Experimental conditions were an air velocity crossing to the heat exchanger(0.5m/s), an air dry-bulb temperature($60^{\circ}C$) and relative humidity(70%). The experimental results have shown that the performance of the inclined PF heat exchangers was better than that of the vertically installed one. PF3 showed better performance compared to PF1 and PF2 due to the large pin pitch which are leading to more draining for dehumidified water. But, capacity and dehumidification amount of the PF heat exchanger at the inclination angles of $60^{\circ}$ was decreased due to pressure drop. Also, to predict the experimental data of the PF heat exchanger, the performance program was developed for the inclination angles of $0^{\circ}$. PF heat exchanger performance between experiment data and calculation data was satisfied within the maximum 2% for capacity and 3% for dehumidification amount.

Heat-treatment Effects of Agricultural Imports for Devitalization of Quarantine Weed Seeds (검역잡초종자 발아력 제거를 위한 수입농산물 열처리 효과)

  • Moon, Kwang-Ok;Oh, Jin-Bo;Kyoung, Eun-Seon;Lee, Yong-Ho;Hong, Sun-Hee;Kang, Byeng-Hoa
    • Weed & Turfgrass Science
    • /
    • v.2 no.2
    • /
    • pp.170-175
    • /
    • 2013
  • Korea is carrying out weed quarantine by plant quarantine regulations including heat-treatment method to prevent the influx of exotic weeds. In order to confirm suitability for current heat-treatment criteria and find field-applicable methods which can completely devitalize quarantine weed seeds, the conditions for heat-treatment with/without 40% relative humidity were studied with 9 species among quarantine weed seeds and one weed species similar to quarantine weed. Dry heat-treatments had been tested under various temperatures and time conditions. All seeds were dead at the conditions of $95^{\circ}C$ for 48 hours, $100^{\circ}C$ for 36 hours, $110^{\circ}C$ for 24 hours, $121^{\circ}C$ for 4 hours and $130^{\circ}C$ for 30 minutes. Heat-treatments at 40% relative humidity resulted in complete seed death at the conditions of $85^{\circ}C$ for 36 hours and $90^{\circ}C$ for 16 hours. The above results show that current heat-treatment criteria are not suitable for several quarantine weeds and these conditions could be applied as a quarantine method to prevent the influx of quarantine weeds along with agricultural imports. More specific conditions for heat tolerant species such as Picris echioides and heat susceptible species such as Cuscuta spp. are necessary and will improve plant quarantine process in devitalizing quarantine weed seeds with different heat tolerances.

The Effects of Dietary Turkish Propolis and Vitamin C on Performance, Digestibility, Egg Production and Egg Quality in Laying Hens under Different Environmental Temperatures

  • Seven, Pinar Tatli
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.8
    • /
    • pp.1164-1170
    • /
    • 2008
  • In this study, the effects of propolis and vitamin C (L-ascorbic acid) supplementation in diets were investigated on feed intake (FI), body weight (BW), body weight gain (BWG), feed conversion rate (FCR) and digestibility and on egg production and qualities (weight, mortality, shell thickness) in laying hens exposed to heat stress. A total of 150 Hyline White Leghorn, aged 42 weeks, hens was divided into five groups of 30 hens. Chicks were randomly divided into 1 positive control, 1 control and 3 treatment groups. The chicks were kept in cages in temperature-controlled rooms at $22^{\circ}C$ for 24 h/d (positive control, Thermoneutral, TN group) or $34^{\circ}C$ for 9 h/d from 08.00-17.00 h followed by $22^{\circ}C$ for 15 h (control, heat stress, HS group) and fed a basal diet or basal diet supplemented with vitamin C (250 mg/kg of L- ascorbic acid/kg of diet) or two levels of propolis (2 and 5 g of ethanol extracted propolis/kg of diet). Increased FI (p<0.05) and improvement in FCR (p<0.05), hen day egg (p<0.05) and egg weight (p<0.05) were found in Vitamin C and propolis-supplemented laying hens reared under heat stress conditions. Mortality rate was higher in the control group than TN, vitamin C and propolis groups (p<0.05). Digestibility of dry matter, organic matter, crude protein and ether extract improved with increasing of both dietary vitamin C and propolis (p<0.05). Vitamin C or propolis supplementation did not affect either the percentage shape index, yolk index or haugh unit and albumen index (p>0.05). However, the egg shell thickness and egg shell weight appeared to be increased in Vitamin C and propolis groups in comparison to HS group birds (p<0.05). In conclusion, dietary supplementation of laying hens with anti-oxidants (vitamin C and propolis) can attenuate heat stress-induced oxidative damage. These positive effects were evidenced by increased growth performance and digestibility, improvement of egg shell thickness and egg weight in comparison to non-supplemented birds. Moreover, supplementation with propolis (5 g/kg diet) was the most efficient treatment.