• Title/Summary/Keyword: Dry deposition sampler

Search Result 15, Processing Time 0.03 seconds

Measurement of Dry Deposition Flux of Air Pollutants to the Waterbody (수체로의 대기오염물질 건식침적량 측정)

  • 김영성;진현철;김용표
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.421-426
    • /
    • 2004
  • Dry deposition fluxes of inorganic acidic species to the waterbody were measured by the dry deposition sampler (DDS). DDS was composed of three pans filled with pure water. An average concentration increase during the sampling time, after removing an abnormal value if existed, was considered as the input by deposition. Important operation parameters such as the amount of water used and sampling time were determined through a series of laboratory experiments. The deposition flux measured by DDS was compared with that by the water surface sampler developed by Yi et ai. (1997a,b).

A Study on Physico-chemical Properties of Dust-fall in Inchon (대기중 강하먼지의 물리화학적 특성분석 -인천지역을 중심으로-)

  • 성일화;민달기;김종규
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.83-89
    • /
    • 1996
  • In order to evaluate the air quality, dry and wet deposition samples were collected by deposit containers during four months in Inchon area. The samples were analyzed for its solid composition and trace elements(Ca, Cd, Cu, Fe, Mn, Ni, Pb, Zn). The main results are summarized below 1. The amounts of dry and wet deposition in Inchon area were 1.06~3.14 ton/$km^2$/month, and affected by the rainfall and suspended yellow sand. 2. Through the analysis of solid balance, we found that 50% of total solids(TS) was fixed suspend ed solids(FSS), 25% was fixed dissolved solids(FDS), and each of volatile suspended solids(VSS) and volatile dissolved solids(VDS) accounted for 12.5%. 3. The amounts collected by sampler for trace elements were 938 ~ 2,765 $\mu g$ calcium/10days sampler, 0.2 ~ 90.4 $\mu g$ cadmium/10days/sampler, 26 ~ 298 $\mu g$ copper/10days/sampler, 928 ~ 3,939 $\mu g$ iron/10days/sampler, 50 ~ 202 $\mu g$ manganese/10days/sampler, 4 ~ 37 $\mu g$ nickel/10days/sampler, 52 ~ 406 $\mu g$ lead/10days/sampler, and 97 ~ 1,317 $\mu g$ zinc/10days/sampler, respectively. 4. Using the manganese analysis, it was found that 76.1% of TS was from soil.

  • PDF

Atmospheric Dry Deposition Characteristics of Nitrogen-containing Compounds into Juam Reservoir (주암호에 대한 질소화합물의 대기건식침적 특성)

  • Cheong Jang-Pyo;Jang Young-Hoan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.657-666
    • /
    • 2005
  • The objectives of this study were to investigate atmospheric dry deposition of inorganic nitrogen-containing compounds to waterbody. Target waterbody is Juam reservoir functioning as one of the major water supply sources in Chollanamdo. Nitrate and ammonium dry deposition fluxes were directly measured using dry deposition plate (DDP) covered with greased strips and a water surface sampler (WSS). The daytime average $NO_{3}^{-}\;and\;NH_{4}^{+}$ fluxes measured with DDP and WSS were $1.7\∼2.6$ times higher than those at nighttime. The seasonal average flux of $NH_{4}^{+}$ showed the highest value in summer. The daytime and nighttime average dry deposition fluxes of particulate phase Nitogen-containing Compounds ($1.13,\;0.80\;mg/m^{2}$ day) were much higher than those of gas phase compounds ($0.50,\;0.24\;mg/m^{2}$ day).

Measurement of Nitrogen and Sulfur Deposition to Lake Paldang (팔당호로의 질소와 황성분 침적 측정)

  • Ghim Young Sung;Jin Hyoun Cheol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.39-48
    • /
    • 2005
  • Nitrogen and sulfur deposition was measured on Lake Pal dang from March 2002 to October 2003. Wet and dry depositions were separately measured using wet- and dry-only samplers, respectively. In order to measure the dry deposition to the water body, a dry deposition sampler composed of three pans filled with pure water, called the deposition water, was used. Since ammonium was generally in excess in ambient air, more than half of ammonium was present in the gaseous form. Ammonium concentration was also generally higher than the sum of major anion concentrations in the deposition water because gaseous species were much easily deposited than the species in fine particles. Nevertheless, the contribution of gaseous ammonia to the deposition of ammonium was not high as well as that of particulate ammonium while the contribution of gaseous nitric acid was much higher than that of particulate nitrate. Annual wet deposition fluxes of nitrogen and sulfur were five and six times higher than their dry deposition fluxes, respectively. Except for ammonium, the dry deposition flux estimated in the present work was a half of the previous results. This was mainly caused by much smaller dry deposition velocities over the water than over the ground.

Gas/Particle Level and Dry Deposition Flux of Atmospheric PCBs

  • Yeo, Hyun-Gu;Park, Ki-Chul
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.4
    • /
    • pp.10-16
    • /
    • 2003
  • Atmospheric samples were conducted from September 2001 to July 2002 with GPS-l PUF sampler in rural site to concentration distributions of gas/particle PCBs and to calculate dry deposition flux of PCBs. $\Sigma$PCBs concentrations of gas/particle PCBs were 59.29$\pm$48.83, 6.56$\pm$6.59 pg/㎥, respectively. Gas contribution (%) of total PCBs (gas + particle) was 90% which existed gas phase in the atmosphere. The particle contribution (%) of PCB congeners increased relatively more of the less volatile congeners with the highest chlorine number. The correlation coefficients (r) between total PCBs and temperature ($^{\circ}C$) showed negative correlation in - 0.62 (p<0.0l) for particle phase, positive correlation in 0.63 (p<0.01) for gas phase. In other word, particle phase PCBs is enriched in colder weather which could be due to greater in corporation of condensed gas phase at low temperature. The calculated dry deposition of total PCBs (gas + particle) was 0.008, 0.008 $\mu\textrm{g}$ $m^{-2}$ da $y^{-l}$ which showed maximum dry deposition flux in December, minimum data in July Bs in the atmosphere. The calculated dry deposition fluxes of total PCBs were influenced by particle phase PCBs even though PCBs in the atmosphere were present primarily in the gas phase.e.

A Study on the Characterization of Size Distributions and Atmospheric Dry Deposition of Heavy Metals (대기중 중금속 입자의 입경분포 및 건식침적 특성에 관한 연구)

  • Yi, Seung-Muk;Lee, Eun-Young;Cheong, Jang-Pyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.575-585
    • /
    • 2000
  • Mass and elemental dry deposition fluxes and ambient particle size distributions were measured using dry deposition plates, a cascade impactor. and a CPS(Coarse Particle Sampler), from July to November 1998 in Seoul. Korea. Primarily anthropogenic elemental fluxes (Cu, Mn, Ni, Pb, Zn) were on average one to two orders of magnitude lower than primarily crustal elements (Al, Ca). Complete total and elemental particle size distributions showed trimodal size distributions due to the peak in particles larger than $10{\mu}m$ in diameter. A multi-step model and the Sehmel-Hodgson model were used to calculate total and cumulative deposition fluxes. The result indicated that dry deposition fluxes were extremely sensitive to the mass of particles larger than $10{\mu}m$ in diameter due to their high dry deposition velocities. The result showed that particles larger than $10{\mu}m$ in diameter dominated atmospheric dry deposition. The modeled fluxes calculated using the measured atmospheric particle size distributions and modeled deposition velocities were compared to measured ones. In general, the measured mass and elemental fluxes agreed well with the modeled ones.

  • PDF

Measurement of Dry Deposition of Polycyclic Aromatic Hydrocarbons in Jeoniu (전주지역에서 다환방향족 탄화수소의 건식 침적 측정)

  • Kim, Hyoung-Seop;Kim, Jong-Guk;Ghim, Young-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.242-249
    • /
    • 2007
  • Deposition fluxes of polycyclic aromatic hydrocarbons (PAHs) were measured at the Chonbuk National University located in Jeonju between June and November 2002. Fluxes of gaseous and particulate PAHs were separately obtained using a water surface sampler (WSS) and a dry deposition plate (DDP). Most of PAHs were deposited in the gaseous form since the low molecular weight PAHs dominates in the atmosphere. The deposition velocity of particulate PAHs was higher than that of gaseous PAHs when the molecular weight was low, but substantially decreased as the fine particle fraction increased with molecular weight. The deposition velocity was generally higher at high wind speeds. However, increase in the deposition velocity in unstable atmospheric conditions was also observed for gaseous PAHs of intermediate molecular weight.

Comparison of Chemical Characteristics in Wet and Bulk Precipitation Collected in the Iksan Area (익산지역에서 자동 및 수동채취방식에 따른 강수의 화학적 특성 비교)

  • 강공언
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.381-396
    • /
    • 2004
  • In order to understand the precipitation acidity and chemical composition of ion species in Iksan area as well as to know the difference of chemical characteristics in precipitation samples from the viewpoint of precipitation sampling method, precipitation samples were collected by wet-only automatic precipitation sampler and bulk manual precipitation sampler in Iksan, from March 2003 to August 2003. The mean pH of precipitation was 5.0. There was a little significant difference in the mean value of pH between automatic and manual sampler. However, pH values of some precipitation samples were lower in automatic sampler than in manual sampler, especially in case of precipitation samples with small rainfall for March 2003. The mean concentrations of each ions in precipitation were generally a little higher in precipitation samples collected by the manual sampler than in those collected by the automatic sampler because of accumulation of dry deposition on the surface of glass funnel installed at the manual sampler during the sampling period or no rainfall. Dominant species determining the acidity of precipitation, were N $H_4$$^{[-10]}$ and nss-C $a^{2+}$ for cations and nss-S $O_4$$^{2-}$ and N $O_3$$^{[-10]}$ for anions. The mean concentration of N $H_4$$^{+}$ and nss-C $a^{2+}$ were 31 $\mu$eq/L and 9 $\mu$eq/L for the automatic sampler and 40 ueq/L and 16 ueq/L for the manual sampler, respectively. In addition, nss-S $O_4$$^{2-}$ and N $O_3$$^{[-10]}$ were 27 $\mu$eq/L and 13 $\mu$eq/L for the automatic sampler and 32 $\mu$eq/L and 17 $\mu$eq/L for the manual sampler, respectively. Although the concentrations of the acidifying ions of nss-S $O_4$$^{2-}$ and N $O_3$$^{[-10]}$ were about 3 times higher than those for foreign pristine sites, precipitation acidity were estimated to be natural due to the neutralization reaction of the alkaline species of N $H_4$$^{+}$ and nss-C $a^{2+}$ with its higher concentrations. Considering the ratios of nss-S $O_4$$^{2-}$/N $O_4$$^{[-10]}$ nss-S $O_4$$^{2-}$, it was found that ammonium sulphate was dominant in Iksan precipitation. The major non-sea salt ions were maximum concentrations for March, but decreased with increasing of precipitation amount.on amount.

Characteristics of Atmospheric Dry Deposition of Nitrogen-containing Compounds (대기 중 질소산화물의 건식침적 특성)

  • Yi, Seung-Muk;Han, Young-Ji;Cheong, Jang-Pyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.775-784
    • /
    • 2000
  • Nitrate dry deposition fluxes were directly measured using knife-leading-edge surrogate surface (KSS) covered with greased strips and a water surface sampler (WSS). The average gaseous flux ($8.3mg/m^2/day$) was much higher than the average particulate one ($3.0mg/m^2/day$). The best fit gas phase mass transfer coefficient (MTC) of $HNO_3$ was obtained by linear regression analysis between measured gaseous flux containing nitrogen compounds and measured ambient $HNO_3$ concentration. The result showed that the MTCs of $HNO_3$ were approximately two times higher than those of $SO_2$. Especially, during the ozone action day, measured gaseous fluxes containing nitrogen compounds were much higher than those ones calculated as the product of measured ambient $HNO_3$ concentration and gas phase MTC of $HNO_3$, which is calculated from MTC of $SO_2$ using Graham's diffusion law. This result indicated that other nitrogen compounds except $HNO_3$ contributed to gaseous flux containing nitrogen compounds into the water surface sampler. The theoretical calculations suggest the contributions of nitrous acid ($HNO_2$) and PAN to the gaseous dry deposition flux of nitrogen containing compounds to the WSS.

  • PDF