• Title/Summary/Keyword: Dry deposition

Search Result 363, Processing Time 0.018 seconds

Dielectric properties of ${Ta_2}{O_5}$ thin film capacitor with $SnO_2$ thin film underlayer ($SnO_2$ 박막을 이용한 ${Ta_2}{O_5}$박막 커패시터의유전특성)

  • Kim, Jin-Seok;Jeong, Gang-Min;Lee, Mun-Hui
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.759-766
    • /
    • 1994
  • Our investigation aimed to reduce the leakage current of $Ta_2O_5$ thin film capacitor by layering SnOz thin film layer under Ta thin film, thereby supplying extra oxygen ions from the $SnO_{2}$ underlayer to enhance the stoichiometry of $Ta_2O_5$ during the oxidation of Ta thin film. Tantalum was evaporated by e-beam or sputtered on p-Si wafers with various deposition temperatures and was oxidized by dry--oxygen at the temperatures between $500^{\circ}C$ and $900^{\circ}C$. Aluminum top and bottom electrodes were formed to make Al/$Ta_2O_5$/p-Si/Al or $Al/Ta_2O_5/SnO_2$p-Si/AI MIS type capacitors. LCR meter and pico-ammeter were used to measure the dielectric constants and leakage currents of the prepared thm film capacitors. XRD, AES and ESCA were employed to confirm the crystallization of the thin f~lm and the compositions of the films. Dielectric constant of $Ta_2O_5$ thin film capacitor with $SnO_{2}$ underlayer was found to be about 200, which is about 10 times higher than that of $Ta_2O_5$ thin film capacitor without $SnO_{2}$ underlayer. In addition, higher oxidation temperatures increased the dielectric constants and reduced the leakage current. Higher deposition temperature generally gave lower leakage current. $Ta_2O_5/SnO_2$ capacitor deposited at $200^{\circ}C$ and oxidized at $800^{\circ}C$ showed significantly lower leakage current, $10^{-7}A/\textrm{cm}^2$ at $4 \times 10^{5}$V/cm, compared to the one without $SnO_{2}$ underlayer. XRD showed that $Ta_2O_5$ thin film was crystallized above $700^{\circ}C$. AES and ESCA showed that initially the $SnO_{2}$, underlayer supplied oxygen ions to oxidize the Ta layer, however, Sn also diffused into the Ta thin film layer to form a new $Ta_xSn_YO_Z$ , ternary oxide layer after all.

  • PDF

Variations in Soil-to-Red Pepper Transfer Factors of Radionuclides with Time of Their Application and Fruit Harvest (고추 재배시 방사성 핵종 처리 및 열매수확 시기에 따른 토양-작물체간 전이계수의 변이)

  • Choi, Yong-Ho;Lee, Won-Yun;Lim, Kwang-Muk;Park, Doo-Won;Lee, Myung-Ho;Lee, Chang-Woo;Lee, Hyun-Duk;Lee, Jeong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.3
    • /
    • pp.171-181
    • /
    • 1997
  • A mixed solution of $^{54}Mn$, $^{60}Co$, $^{85}Sr$ and $^{137}Cs$ was applied to the soil of culture boxes in a greenhouse 2 days before transplanting red pepper and at 3 different times during its growth for investigating transfer factors ($m^2/kg-dry$) for its green and red fruits. Transfer factors varied with radionuclide, application time and harvest time by factors of about $20{\sim}100$. They decreased mostly in the order of $^{85}Sr>^{54}Min>^{60}Co>^{137}Cs$ while $^{54}Mn$ and $^{60}Co$ was higher than $^{85}Sr$ when time lapse between application and harvest was short. Transfer factors of $^{85}Sr$ and $^{137}Cs$ at the last application were lower than those at the previous one by factors of $3{\sim}20$ depending on harvest time. Variations in $^{54}Mn$ and $^{60}Co$ transfer factors with application time after transplanting were comparatively low. Transfer factors of $^{54}Mn$, $^{60}Co$ and $^{85}Sr$ mixed with topsoil before transplanting were up to $3{\sim}9$ times higher than those for the application onto soil surface 2 days after transplanting while there was no difference in $^{137}Cs$. The present results can be referred to in estimating root-uptake concentrations of the radionuclides in red pepper fruit and taking proper measures for its harvest and consumption at the event of an accidental release during the growing season of red pepper.

  • PDF

Root Uptake of $^{54}Mn,\;^{60}Co,\;^{85}Sr\;and\;^{137}Cs$ Deposited at Different Times during the Growing Season of Rice (벼 재배 기간중 침적시기에 따른 Root Uptake of $^{54}Mn,\;^{60}Co,\;^{85}Sr,\;^{137}Cs$의 뿌리흡수)

  • Choi, Yong-Ho;Jo, Jae-Seong;Lee, Chang-Woo;Hong, Kwang-Hee;Lee, Jeong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.4
    • /
    • pp.255-263
    • /
    • 1995
  • Root uptakes of $^{54}Mn,\;^{60}Co,\;^{85}Sr\;and\;^{137}Cs$ by rice were studied through a greenhouse experiment in which the upper 20 cm of the culture box was filled with an acidic loamy-sandy soil and a mixed solution of the radionuclides was applied to the surface water on the soil 2 days before, and 5 different times after, transplanting. Percent uptakes of the radionuclides to rice tops varied $3.4{\sim}13.7%,\;0.03{\sim}0.1%,\;0.6{\sim}1.5%,\;0.02{\sim}0.15%$, respectively, with application time. Among radionuclides, soil-to-plant transfer factors decreased, on the whole, in the order of $^{54}Mn>^{85}Sr>^{60}Co{\geq}^{137}Cs$, and among plant parts, in the order of straw > chaff > hulled seed. Transfer factors $(m^2/kg-dry)$ in hulled seed were, depending on application time, $1.2{\times}10^3{\sim}5.0{{\times}10^3\;for\;^{54}Mn,\;1.6{\times}10^5{\sim}2.6{\times}10^4\;for\;^{60}Co,\;1.1{\times}10^4{\sim}7.6{\times}10^4\;for\;^{85}Sr\;and\;5.2{\times}10^5{\sim}7.0{\times}10^4\;for\;^{137}Cs$. The highest factors of all the radionuclides in straw came from the application at 67 days after transplanting while those of $^{54}Mn,\;^{60}Co\;and\;^{85}Sr$ in hulled seed appeared at later applications. The data from this studv can be referred to in assessing the radiological impact of an accidental contamination during the rice growth.

  • PDF