• Title/Summary/Keyword: Dry deposition

검색결과 363건 처리시간 0.032초

새로운 건성 및 습성 침착 채취기의 개발 (Development of the Novel Dry and Wet Deposition Collector)

  • 이병규;이채복
    • 한국대기환경학회지
    • /
    • 제16권6호
    • /
    • pp.675-684
    • /
    • 2000
  • A novel dry and wet deposition collector, which can overcome the several problems such as water evaporation cartridge cracks and high costs founded in the previous collector systems, has been constructed. ENVI-18 SPE adsorption cartridge has been used to measure atmospheric deposition of polycylic aromatic hydrocarbons (PAHs). A surrogate surface, consisted of water and methanol, was filled in the dry deposition funnel to simulate dry deposition onto water surface. A water supply system in order to compensat evaporation of the surrogate surface was used and it was consisted of a piston pump, a tubing pump, a overflow tube and a chamber system. A novel water vaporizing system to supply water onto the wet SPE cartridge system with a constant flow rate was developed. The novel water vaporizing system, consisted of a vacuum pump, a water supply reserviour and tube and a mini space heater, could prevent the PAHs adsorption cartridge cracks occurred in the previous collector and effectively adsorb PAHs. The novel dry and wet deposition collector showed a good adsorption, desorption, and recovery rates of PAHs. By reducing the number of pumps used and employing polypyopylene (PP) instead of teflon as a material of collection funnel, the total construction costs were much reduced as compared with the previous dry and wet deposition collectors.

  • PDF

가을철 대기환경 중 수용성 이온성분의 침적특성 (Deposition Characteristics of Water-soluble Inorganic Ions in the Iksan Ambient Air during Fall, 2004)

  • 강공언;김남송;전선복
    • 한국환경보건학회지
    • /
    • 제32권4호
    • /
    • pp.359-372
    • /
    • 2006
  • In order to investigate the daily deposition characteristics of water-soluble inorganic components in airborne deposit on the Iksan, deposition samples were collected using a deposition gauge from October 16 to November 1, 2004. Deposition samples were collected using two different sampling gauges, a dry gauge and a wet gauge, respectively. To get wet the bottom of wet gauge during the sampling period, the volume of $30{\sim}50ml$ distilled ionized water was added in a wet gauge before the beginning of each deposition sampling. Deposition samples were collected twice a day and analyzed for inorganic water-soluble anions ($Cl^-,\;{NO_3}^-,\;{SO_4}^{2-}$) and cations (${NH_4}^+,\;Na^+,\;K^+,\;Mg^{2+},\;Ca^{2+}$) using ion chromatography. Qualify control and quality assurance of analytical data were checked by the data obtained from reinjection of standard solution, Dionex cross check standard solutions, and random several deposition samples, and measured data was estimated to be reliable. Considering the deposition sample volume, the sampling time, the surface area of sampling container, and the ion concentration measured, the daily deposition amounts for measured ions were calculated in $mg/m^2$. The total daily deposition amounts of all measured ions for dry and wet gauge were $7.5{\pm}2.8$ and $17.7{\pm}4.2mg/m^2$, respectively. A significant increase in deposition amount during rainfall days was observed for both wet gauge and dry gauge, having no difference of deposition amount between in wet gauge and in dry gauge. The mean deposition of all ions measured in this study were higher in wet gauge than in dry gauge because of the surface difference of the sampling container, especially for ${NH_4}^+\;and\;{SO_4}^{2-}$. The mean deposition amounts of ${NH_4}^+\;and\;{SO_4}^{2-}$ in wet gauge were found to be about 10 times and 3 times higher than those in dry gauge, while the rest of the chemical species were equal or a little higher in wet gauge than in dry gauge. Dominant species in dry gauge were ${NO_3}^-\;and\;Ca^{2+}$, accounting for 21% and 28% of the total ion deposition, whereas those in wet gauge were ${SO_4}^{2-}\;and\;{NH_4}^+$, accounting for 19% and 41% of the total ion deposition, respectively.

부산의 지형적 특성을 고려한 $O_3$의 건성 침적속도 시뮬레이션 (A Simulation of the $O_3$Dry Deposition Velocity Considering Topographical Characteristics in Pusan)

  • 원경미;이화운
    • 한국대기환경학회지
    • /
    • 제14권5호
    • /
    • pp.421-432
    • /
    • 1998
  • Deposition processes limit the life time of pollutants in the atmosphere and control the distance travelled before deposition. Thus the understanding about atmospheric deposition processes is essential for a proper assessment of the environmental impacts due to the anthropogenic pollutants. The dry deposition velocities are related to surface types, atmospheric stabilities, friction velocities, air pollutants and so on. In this study we simulated the dry deposition velocities of O3 in Pusan region. The calculated deposition velocities compared to the observed O3 data obtained during the summer of 1988 over a deciduous forest in Canada. The comparison showed that the model somewhat overpredicted deposition velocities for the average diurnal variations with maxima in daytime and minima in nighttime mostly due to the turbulence intensity.

  • PDF

Seasonal Variations in Mercury Deposition over the Yellow Sea, July 2007 through April 2008

  • Ghim, Young Sung;Oh, Hyun Sun;Kim, Jin Young;Woo, Jung-Hun;Chang, Young-Soo
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권3호
    • /
    • pp.146-155
    • /
    • 2016
  • Spatial and temporal variations of mercury, including dry and wet deposition fluxes, were assessed over Northeast Asia, targeting the Yellow Sea, using meteorology and chemistry models. Four modeling periods, each representative of one of the four seasons, were selected. Modeling results captured general patterns and behaviors, and fell within similar ranges with respect to observations. However, temporal variations of mercury were not closely matched, possibly owing to the effects of localized emissions. Modeling results indicated that dry deposition is correlated with wind speed, while wet deposition is correlated with precipitation amount. Overall, the wet deposition flux of $66ng/m^2-day$ was about twice as large as the dry deposition flux of $32ng/m^2-day$, when averaged over the four modeling periods. Dry deposition occurred predominantly in the form of reactive gaseous mercury (RGM). In contrast, RGM accounted for only about two-thirds of wet deposition, while particulate mercury accounted for the remainder.

지표면 Wetness에 따른 오존의 건성침적속도 특성 (The Characteristics of the Dry Deposition Velocity for O3 regarding Surface Wetness)

  • 이화운;김유근;문난경
    • 한국환경과학회지
    • /
    • 제12권4호
    • /
    • pp.393-397
    • /
    • 2003
  • It has been researched the relationship between deposition velocity and factors which could affect the deposition phenomena and deposition velocity also has been estimated fer several land-use types. The typical deposition velocities are complex functions of surface types, atmospheric stabilities, friction velocities, air pollutants and so on. The canopy resistance is major contribution to the model's total resistance for O₃. Canopy wetness is also an important factor to calculate deposition velocity. We considered the canopy wetness as canopy water content(CWC) in our Model. But, it is not easy to observe CWC over each land-use types. In this study, we use CWC observed by EMEFS(CANADA Environment Service, 1988) to examine the influence of CWC in estimation of 03 dry deposition velocity(V/sub d/) in summertime. The value of O₃ V/sub d/ range 0.2 ∼ 0.7 cm s/sup -1/ on dry surface and 0.01 ∼ 0.35 cm s/sup -1/ on wet surface in daytime.

Gas/Particle Level and Dry Deposition Flux of Atmospheric PCBs

  • Yeo, Hyun-Gu;Park, Ki-Chul
    • 한국환경보건학회지
    • /
    • 제29권4호
    • /
    • pp.10-16
    • /
    • 2003
  • Atmospheric samples were conducted from September 2001 to July 2002 with GPS-l PUF sampler in rural site to concentration distributions of gas/particle PCBs and to calculate dry deposition flux of PCBs. $\Sigma$PCBs concentrations of gas/particle PCBs were 59.29$\pm$48.83, 6.56$\pm$6.59 pg/㎥, respectively. Gas contribution (%) of total PCBs (gas + particle) was 90% which existed gas phase in the atmosphere. The particle contribution (%) of PCB congeners increased relatively more of the less volatile congeners with the highest chlorine number. The correlation coefficients (r) between total PCBs and temperature ($^{\circ}C$) showed negative correlation in - 0.62 (p<0.0l) for particle phase, positive correlation in 0.63 (p<0.01) for gas phase. In other word, particle phase PCBs is enriched in colder weather which could be due to greater in corporation of condensed gas phase at low temperature. The calculated dry deposition of total PCBs (gas + particle) was 0.008, 0.008 $\mu\textrm{g}$ $m^{-2}$ da $y^{-l}$ which showed maximum dry deposition flux in December, minimum data in July Bs in the atmosphere. The calculated dry deposition fluxes of total PCBs were influenced by particle phase PCBs even though PCBs in the atmosphere were present primarily in the gas phase.e.

황사의 크기 및 침착량에 대한 수치 모의 (A Numerical Study on the Size and Depositions of Yellow Sand Events)

  • 정관영;박순웅
    • 한국대기환경학회지
    • /
    • 제14권3호
    • /
    • pp.191-208
    • /
    • 1998
  • Estimations of dry and wet depositions in Korea and the size distributions of yellow sand above Korea have been carried out using the Eulerian aerosol model with the simulated meteorological data from the SNU mesoscale meteorological model. The estimated particle size distribution in Korea shows a bimodal distribution with peak values at 0.6 pm and 7 pm and a minimum at 2 pm in the lower layer However, as higher up, the bimodal distribution becomes an unimodal distribution with a peak value at 4∼5mm. Among the total amount of yellow sand deflated in the source regions , the dry and wet deposition fluxes were about 92%, and about 1.3∼0.5%, repectively, and the rest(5∼6%) is suspended in the air, Most of dust lifted in the air during the clear weather is deposited in the vicinity of the source regions by dry deposition and the rest undergoes the long -range transport with a gradual removal by the wet deposition processes. Over Korean peninsula, the total amount of yellow sand suspended in the air was about 6∼8% of the emissions in the source region and the dry and wet deposition fluxes were about 0.005∼0.7% and 0.003∼0.051% of the total emitted amount, repectively. It is estimated that 2.7∼8.9 mesa-tons of yellow sand is transported annually over the Korean peninsula with the annual mean dry deposition of 2.1∼490 kilo-tons and the annual mean wet deposition of 1.5∼65 kilo-tons.

  • PDF

지표 부근에서의 대기오염물질 건성 침적속도에 관한 모수화 (A Simulation for Dry Depositon Velocity of Air Pollutants over various surfaces.)

  • 이화운;박종길
    • 한국환경과학회지
    • /
    • 제3권4호
    • /
    • pp.367-372
    • /
    • 1994
  • A predictive model is demonstrated for gas removal rates from the aklosphere by dw deposition. Typical deposition velocities are complex functions of surface types, atmospheric stabilities, friction velocities, air pollutants, and so on. In this paper we simulated the calculation of dry deposition velocities near the earth surfaces, simultaneously we estimated real dry deposition velocities using the previous simulation. The measurement taken over a deciduous forest by Padro et d.(1988) were used to verify this model. In the comparison of the value of deposition velocity between numerical computation and observation, there are partially overestimations and underestimations between them, but we can speak that they are in a good accordance.

  • PDF

수체로의 대기오염물질 건식침적량 측정 (Measurement of Dry Deposition Flux of Air Pollutants to the Waterbody)

  • 김영성;진현철;김용표
    • 한국대기환경학회지
    • /
    • 제20권3호
    • /
    • pp.421-426
    • /
    • 2004
  • Dry deposition fluxes of inorganic acidic species to the waterbody were measured by the dry deposition sampler (DDS). DDS was composed of three pans filled with pure water. An average concentration increase during the sampling time, after removing an abnormal value if existed, was considered as the input by deposition. Important operation parameters such as the amount of water used and sampling time were determined through a series of laboratory experiments. The deposition flux measured by DDS was compared with that by the water surface sampler developed by Yi et ai. (1997a,b).

Identification of Source Locations for Atmospheric Dry Deposition of Heavy Metals during Yellow-Sand Events in Seoul, Korea in 1998 Using Hybrid Receptor Models

  • Han, Young-Ji;Holsen, Thomas M.;Hopke, Philip K.;Cheong, Jang-Pyo;Kim, Ho;Yi, Seung-Muk
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2004년도 International Conference Global Environmental Problems and their Health Consequences
    • /
    • pp.92-106
    • /
    • 2004
  • Elemental dry deposition fluxes were measured using dry deposition plates from March to June 1998 in Seoul, Korea. During this spring sampling period several yellow sand events characterized by long-range transport from China and Mongolia impacted the area. Understanding the impact of yellow-sand events on atmospheric dry deposition is critical to managing the heavy metal levels in the environment in Korea. In this study, the measured flux of a primarily crustal metal, Al and an anthropogenic metal, Pb was used with two hybrid receptor models, potential source contribution function (PSCF) and residence time weighted concentration (RTWC) for locating sources of heavy metals associated with atmospheric dry deposition fluxes during the yellow-sand events in Seoul, Korea. The PSCF using a criterion value of the 75th percentile of the measured dry deposition fluxes and RTWC results using the measured elemental dry deposition fluxes agreed well and consistently showed that there were large potential source areas in the Gobi Desert in China and Mongolia and industrial areas near Tianjin, Tangshan, and Shenyang in China. Major industrial areas of Shenyang, Fushun, and Anshan, the Central China loess plateau, the Gobi Desert, and the Alaskan semi-desert in China were identified to be major source areas for the measured Pb flux in Seoul, Korea. For Al, the main industrial areas of Tangshan, Tianjin and Beijing, the Gobi Desert, the Alashan semi-desert, and the Central China loess plateau were found to be the major source areas. These results indicate that both anthropogenic sources such as industrial areas and natural sources such as deserts contribute to the high dry deposition fluxes of both Pb and Al in Seoul, Korea during yellow-sand events. RTWC resolved several high potential source areas. Modeling results indicated that the long-range transport of Al and Pb from China during yellow-sand events as well as non yellow-sand spring daytimes increased atmospheric dry deposition of heavy metals in Korea.

  • PDF