• Title/Summary/Keyword: Dry climate

Search Result 412, Processing Time 0.031 seconds

Assessment of Contribution of Climate and Soil Factors on Alfalfa Yield by Yield Prediction Model (수량예측모델을 통한 Alfalfa 수량에 영향을 미치는 기후요인 및 토양요인의 기여도 평가)

  • Kim, Ji Yung;Kim, Moon Ju;Jo, Hyun Wook;Lee, Bae Hun;Jo, Mu Hwan;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.1
    • /
    • pp.47-55
    • /
    • 2021
  • The objective of this study was to access the effect of climate and soil factors on alfalfa dry matter yield (DMY) by the contribution through constructing the yield prediction model in a general linear model considering climate and soil physical variables. The processes of constructing the yield prediction model for alfalfa was performed in sequence of data collection of alfalfa yield, meteorological and soil, preparation, statistical analysis, and model construction. The alfalfa yield prediction model used a multiple regression analysis to select the climate variables which are quantitative data and a general linear model considering the selected climate variables and soil physical variables which are qualitative data. As a result, the growth degree days(GDD) and growing days(GD), and the clay content(CC) were selected as the climate and soil physical variables that affect alfalfa DMY, respectively. The contributions of climate and soil factors affecting alfalfa DMY were 32% (GDD, 21%, GD 11%) and 63%, respectively. Therefore, this study indicates that the soil factor more contributes to alfalfa DMY than climate factor. However, for examming the correct contribution, the factors such as other climate and soil factors, and the cultivation technology factors which were not treated in this study should be considered as a factor in the model for future study.

Influence of climate change on crop water requirements to improve water management and maize crop productivity

  • Adeola, Adeyemi Khalid;Adelodun, Bashir;Odey, Golden;Choi, Kyung Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.126-126
    • /
    • 2022
  • Climate change has continued to impact meteorological factors like rainfall in many countries including Nigeria. Thus, altering the rainfall patterns which subsequently affect the crop yield. Maize is an important cereal grown in northern Nigeria, along with sorghum, rice, and millet. Due to the challenge of water scarcity during the dry season, it has become critical to design appropriate strategies for planning, developing, and management of the limited available water resources to increase the maize yield. This study, therefore, determines the quantity of water required to produce maize from planting to harvesting and the impact of drought on maize during different growth stages in the region. Rainfall data from six rain gauge stations for a period of 36 years (1979-2014) was considered for the analysis. The standardized precipitation and evapotranspiration index (SPEI) is used to evaluate the severity of drought. Using the CROPWAT model, the evapotranspiration was calculated using the Penman-Monteith method, while the crop water requirements (CWRs) and irrigation scheduling for the maize crop was also determined. Irrigation was considered for 100% of critical soil moisture loss. At different phases of maize crop growth, the model predicted daily and monthly crop water requirements. The crop water requirement was found to be 319.0 mm and the irrigation requirement was 15.5 mm. The CROPWAT 8.0 model adequately estimated the yield reduction caused by water stress and climatic impacts, which makes this model appropriate for determining the crop water requirements, irrigation planning, and management.

  • PDF

Lakes and Palaeolakes in Mongolia and Northwestern China

  • Michael, Walther;Bernd, Wunnemann;Altangerel, Tshimeksaichan
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.17-17
    • /
    • 2004
  • The Pleistocene lake level and climate development is described by proxies from sediment, pollen and diatom records in Mongolia and Northwest-China. It could be proved that higher lake levels seem to have existed during the old and mid Pleistocene period interpreted on the base of geomorphological and sedimentological reords. They are dated in a relativ time scale. The lake basins are filled up to 300 m by limnic deposits, which foused on a constant water balance of more than 700.000 years. Late Glacial and Holocene lake level fluctuations and climate changes can be proved by biostratigraphic records pointing to dry and wet phases. Only for the youngest history desiccation of some lakes are related to human impact.

  • PDF

Determination of Moisture Index in Korea

  • Ra, Jong Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.301-308
    • /
    • 2018
  • This study aimed to obtain basic climate information for effective moisture control in wood in Korea. Two independent climate indexes, namely drying index (DI) and wetting index (WI), were determined using hourly weather data for 82 locations recorded from 2009 to 2017. These data were collected from the Korea Meteorological Administration (KMA). Hourly data had not been measured prior to 2009. DI and WI revealed that all regions were cold and wet except Baengnyeongdo, which was classified as a cold and dry region. DI and WI were normalized assuming that wetting and drying were equally important phenomena. Then, the normalized indexes were combined into moisture index (MI) to rank the moisture loading of the regions. The MIs showed that Seogwipo had the greatest moisture loading in Korea, followed by Seongsan, Namhae, and Geoje. The MIs suggested that Korea exhibited severe moisture loading. Further studies are required to investigate the relation between MI and moisture content on wood surfaces from a wood maintenance point of view.

Past Vegetation of Moojaechi on Mt. Jungjok by Pollen Analysis (화분분석에 의한 정족산 무제치늪의 과거식생)

  • 박재근;장남기
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_1
    • /
    • pp.427-433
    • /
    • 1998
  • The standing crop and net production were estimated in Moojaechi on Mt. Jungjok. By using the decay model of organic carbon, absolute year of bog peat was calculated. Pollen analysis to bog peat revealed vegetational history and climate change around Moojaechi. The time required for amount of the accumulated peat in the bog was estimated in terms of the balance of the accumulation and decay of organic carbon of the deposit peat. Absolute year of the peat surveyed in this study was about 314 years. Pollen of Pinus was predominant in all the pollen zone, Geamineae and Cyperaceae increased in lower pollen zone while Pinus in upper pollen zone. This showes that climate of the past was probably more humid than that of present. In addition, middle pollen zone showed warming trend which is suggested by high pollen concentration of Quercus, Juglans, Carpinus and Corylus. It suggests that overall environment and vegetation were changed from warmer and more humid to dry condition in Moojaechi and it is considered as the course of boggy ground formation by retrogressive successions.

  • PDF

An Uncertainty Assessment for Annual Variability of Precipitation Simulated by AOGCMs Over East Asia (AOGCM에 의해 모의된 동아시아지역의 강수 연변동성에 대한 불확실성 평가)

  • Shin, Jinho;Lee, Hyo-Shin;Kim, Minji;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.111-130
    • /
    • 2010
  • An uncertainty assessment for precipitation datasets simulated by Atmosphere-Ocean Coupled General Circulation Model (AOGCM) is conducted to provide reliable climate scenario over East Asia. Most of results overestimate precipitation compared to the observational data (wet bias) in spring-fall-winter, while they underestimate precipitation (dry bias) in summer in East Asia. Higher spatial resolution model shows better performances in simulation of precipitation. To assess the uncertainty of spatiotemporal precipitation in East Asia, the cyclostationary empirical orthogonal function (CSEOF) analysis is applied. An annual cycle of precipitation obtained from the CSEOF analysis accounts for the biggest variability in its total variability. A comparison between annual cycles of observed and modeled precipitation anomalies shows distinct differences: 1) positive precipitation anomalies of the multi-model ensemble (MME) for 20 models (thereafter MME20) in summer locate toward the north compared to the observational data so that it cannot explain summer monsoon rainfalls across Korea and Japan. 2) The onset of summer monsoon in MME20 in Korean peninsula starts earlier than observed one. These differences show the uncertainty of modeled precipitation. Also the comparison provides the criteria of annual cycle and correlation between modeled and observational data which helps to select best models and generate a new MME, which is better than the MME20. The spatiotemporal deviation of precipitation is significantly associated with lower-level circulations. In particular, lower-level moisture transports from the warm pool of the western Pacific and corresponding moisture convergence significantly are strongly associated with summer rainfalls. These lower-level circulations physically consistent with precipitation give insight into description of the reason in the monsoon of East Asia why behaviors of individually modeled precipitation differ from that of observation.

Selection of the Optimum Global Natural Vegetation Mapping System for Estimating Potential Forest Area (지구상(地球上)의 잠재삼림면적(潜在森林面積)을 추정(推定)하기 위한 적정(適定) 식생도제작(植生圖製作) 시스템의 선발(選拔))

  • Cha, Gyung Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.25-34
    • /
    • 1997
  • The optimum global natural vegetation mapping(GNVM) system was selected as a series of the study to estimate potential forest area of the globe. To select the system, three types of GNVM systems which are simple system with Light Climatic Dataset(LCD), altitude-allowed system with LCD and altitude-allowed system with Heavy Climatic Dataset(HCD) were established and compared. The three GNVM systems spherically interpolate such spotty climate data as those observed at weather stations the world over onto $1^{\circ}{\times}1^{\circ}$ grid points, product vegetation type classification, and produce a potential natural vegetation(PNV) map and a PNV area. As a result of comparison with three GNVM systems, altitude-allowed LCD system represented natural vegetation distribution better than other versions. The difference between the simple system versus the one with altitude allowance indicated that the simple version tends to over-represent the warmer climate areas and under-represent cold and hostile climate areas. In the difference between altitude-allowed versions of LCD and HCD, HCD version tended to overestimate moist climate areas and to underestimate dry climate areas.

  • PDF

Spatio-Temporal Variations of Paddy and Water Salinity of Gunnae Reclaimed Tidelands in Western Coastal Area of Korea (서해안 군내간척지 담수호 및 농경지 염류의 시공간적 분포 특성 분석)

  • Beom, Jina;Jeung, Minhyuk;Park, Hyun-Jin;Choi, Woo-Jung;Kim, YeongJoo;Yoon, Kwang Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • To understand salinity status of fresh water and paddy soils and the susceptibility of rice to salinity stress of Gunnae reclaimed tidelands, salinity monitoring was conducted in rainy and dry seasons. For fresh water, a high salinity was observed at the sampling location near the sluice gate and decreased with distance from the gate. This spatial pattern of fresh water salinity indicates the necessity of spatial distribution of salinity in the assessment of salinity status of fresh water. Interestingly, there was significant correlation between rainfall amount and salinity, implying that salinity of fresh water varies with rainfall and thus it may be possible to predict salinity of water using rainfall. Soil salinity also higher near the gate, reflecting the influence of high saline water. In addition, the groundwater salinity also high to threat rice growth. Though soil salinity status indicated low possibility of sodium injury, there was changes in soil salinity status during the course of rice growth, suggesting that more intensive monitoring of soil salinity may be necessary for soil salinity assessment. Our study suggests the necessity of intensive salinity monitoring to understand the spatio-temporal variations of salinity of water and soil of reclaimed tideland areas.

Friction Characteristics of Aluminized Polyester Fabric under Dry - and Water- Lubricated Conditions

  • Byun, JaeYoung;Okechukwu, Nicholas Nnaemeka;Lee, Eunsuk;Park, JinGyu;Choi, WonSik
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.396-402
    • /
    • 2019
  • Materials made from plastics are increasingly utilized in constructing greenhouses and setting up shield structures. Polyester fabrics have a wide range of use in horticulture and other fields of agriculture. They are utilized as a greenhouse cover and also help in combating intense climate variation in the field. Over time, these fabrics may experience friction against other surfaces. Owing to this, the surface framework of the material degenerates. This study examines the frictional characteristics of aluminized polyester fabric in both dry- and water-lubricated environments under changing applied loads and sliding speeds. Friction experiments are performed at room temperature by employing a pin on a disk. The experiments reveal that the friction coefficient decreases with increase in applied load in both dry sliding and water-lubricated environment. However, the friction coefficient decreases more under the water-lubricated setting than in the dry state. At the maximum applied load, the highest friction coefficient is discovered in the dry state with a range of 0.282 to 0.237, whereas a friction coefficient of 0.229 to 0.189 is observed in the water-lubricated state. Additionally, it is observed that the friction coefficient increases with an increase in sliding speed under both experimental environments. The examination of specimen surfaces reveals that the abrasion is minor in the water-lubricated setting compared with that in the dry state.

Advances of Post-combustion Carbon Capture Technology by Dry Sorbent (건식흡수제 이용 연소배가스 이산화탄소 포집기술)

  • Yi, Chang-Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.140-146
    • /
    • 2010
  • This paper addresses recent status and trends of carbon dioxide capture technologies using dry sorbents in the flue gas. The advantages of dry sorbent $CO_2$ capture technology are broader operating temperature range, less energy loss, less waste water, less corrosion problem, and natural properties of solid wastes. Recently, U.S.A. and Korea have been developing processes capturing $CO_2$ from real coal flue gas as well as sorbents improving sorption capacity to decrease total $CO_2$ capture cost. New class of dry sorbents have been developed such as chemisorbents with alkali metals of which material cost is low, amines physically adsorbed on silica supports, amines covalently tethered to the silica support, carbon-supported amines, polymer-supported amines, amine-containing solid organic resins and metal-organic framework. The breakthrough is needed in the materials on dry sorbents to decrease capture cost.