• Title/Summary/Keyword: Dry and moisture test

Search Result 215, Processing Time 0.037 seconds

A Study on the Effects of Bituminous Material on Durability of Soil-Cement Mixtures (염청재료가 흙-시멘트의 강도 및 내구성에 끼치는 영향에 관한 연구)

  • 김종옥;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4599-4613
    • /
    • 1978
  • This study was intended to investigate the effects of bituminous material content of soil-cement mixtures on their durability. For the purpose, unconfined compressive strength test, Freeze-thaw test, and wet-dry test were performed with three types of soil. Each type of soil was mixed with three levels of cement content and each soil-cement mixture was mixed with four levels of bituminous material content. For the unconfined compressive strength test, Freeze-thaw test and wet-dry test, 324, 108, and 108-specimens were prepared respectively. Unconfined compressive strength was measured at age of 7-days, 14-days and 28-days using 108-specimens in each age. The soil-cement loss rate due to freeze-thaw and wet-dry were calculated after 12 cycles of test using 108-specimens in each test. The results are summarized as follows : 1. Optimum moisture content was increased with increase of cement content, but maximum dry density was changed irregulary with increase of the cement content. 2. The unconfined compressive strength was increased with increase of cement content, bituminous material content and curing age. Cement is more effective factor than bituminous material on unconfined compressive strength of soil-cement Mixture. 3. It is estimated as the most economical cement content that the recommended cement content of A.S.T.M. because increasing rate of unconfined compressive strength at age of 28-days was low when cement content is above the recommanded cement content of A.S.T.M. among all types of soil. 4. Although a portion of cement content is substituted for bituminous material, the necessary unconfined compressive strength can be obtained. 5. The soil-cement loss was more influenced by wet-dry than Freeze-thaw 6. The bituminous material is more effective on the decrease of soil-cement loss than increase of unconfined compressive strength 7. The void ratio of soil-cement mixture was changet irregularly with increase of cement content, but that was decreased in proportion to the increase of bituminous material content. 8. The regression equation between the unconfined compressive strength and soil-cement loss rate were obtained as table 7.

  • PDF

Strength properties of lime-clay mixtures (석회 혼입 점토의 강도 특성)

  • Yur, Jae Ho;Kwon, Moo Nam;Goo, Jung Min;Kim, Hyun Ki
    • Current Research on Agriculture and Life Sciences
    • /
    • v.18
    • /
    • pp.61-69
    • /
    • 2000
  • This study was conducted to investigate most effective the optimum lime content for lime-clay modification. To achieve the aim, characteristics of compaction and compressive strength were tested by adding of 0, 5, 10, 15 and 20% lime (Hydrated lime) of dry weight of the clay. Distilled water was added 10, 15, 20 and 25% of dry weight of lime-clay mixture. In this test, the compressive strength of the specimens was measured according to the following curing period : 7, 21, 28, 35 and 49 days. The results are as follows. (1) As lime additive increased, the optimum moisture content of lime-clay mixture was increased and the maximum dry density was decreased. (2) The soil mixture of 20% of the moisture content and 10% of lime additive was shown the maximum compressive strength. (3) As curing period longer, the compressive strength was increased but after 21 curing days, the increasing rate of compressive strength was low as compared with earlier its value. (4) In the range of 20% of the moisture content, compressive strength of mixture of 10% lime additive increased twice compared with that of mixture of 0% lime additive. (5) All of the lime-clay are possible to use for an sub-base material and 20% of moisture content of lime-clay mixture is possible to use for a base material.

  • PDF

Mechanical Characteristics of Basalt in Jeju Island with Relation to Moisture Condition (함수상태에 따른 제주도 현무암의 역학적 특성)

  • Park, Sangyeol;Moon, Kyoungtae
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.7
    • /
    • pp.29-40
    • /
    • 2020
  • In this study, various laboratory tests were conducted to evaluate the effect of the moisture conditions of Jeju basalt on the mechanical properties. Twenty specimens were produced respectively from basalts collected from Sangga-ri and Eoeum-ri in northwestern Jeju. The tests were performed under saturated and dry conditions, and the results of these tests were used to examine the relationship with the physical properties and the mechanical properties depending on the moisture conditions. As a result of analysis with the test results and references, it was found that the uniaxial compressive strength, Brazilian tensile strength and elastic modulus in the saturated condition decrease at a similar ratio as compared with the dry condition. Also, the Brazilian tensile strength and the uniaxial compressive strength were in a linear proportional relationship, and in the moisture conditions, this relationship was not significantly affected.

Effect of Water Environment on the Mechanical Properties of Unidirectional CFRP (일방향 탄소섬유강화 복합재료의 기계적 성질에 미치는 수 환경의 영향)

  • 손선영;김재동;고성위
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.23-30
    • /
    • 1997
  • The purpose of this paper is to investigate the water environmental effect on the mechanical properties of carbon fiber/epoxy composites. Moisture concentration absorbed in CFRP under various water environment was calculated and degradation of mechanical properties for each wet composite laminates is investigated by performing the flexual and tensile test. The results show that moisture absorption is accelerated in higher temperature environment and under the same temperature sea water environment prompts more absorption than fresh water. As increasing the water temperature and moisture concentration tensile and flexual strength decreased as much as 25%-40% compared with dry condition.

  • PDF

Fundamental Study on Geotechnical Properties of Sand-Bentonite Mixtures (모래-벤토나이트 혼합물의 지반 공학적특성에 관한 기초 연구)

  • 권무남;유택항
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.6
    • /
    • pp.99-110
    • /
    • 1997
  • The study was conducted in order to investigate the basic geotechnical properties of sand-bentonite mixtures with the various bentonite contents. The results obtained are as follows : 1. Optimum moisture content of sand-bentonite mixtures was approximately 17.10~18.52% corresponding to the maximum dry density of 1.58~1 .64gf/$cm^3$. As the bentonite contents and curing peroid increased, both the maximum dry density and optimum moisture content of sand-bentonite mixtures increased. 2. The unconfined compressive strength of sand-bentonite mixtures increased as the increase of bentonite content, but it did not change along the curing period. 3. The sand-bentonite mixtures ruptured at 8~15% of the axial strain and the maxi-mum shearing stress was about O.7Okgf/$cm^2$. 4. According to the increase of bentonite content, the cohesion intercept and internal friction of the sand-bentonite mixtures increased slightly in the shear test, while the cohesion intercept increased largely, and the internal friction angle decreased largely in the triaxial test. 5. Both the initial void ratio and swelling of the sand-bentonite mixtures were very low with respect to the consolidation pressure increase. 6. The swelling and shrinkage of sand-bentonite mixtures increased slightly according to the increment of bentonite content.

  • PDF

Surface Properties of Fancy Veneer Overlaid Medium Density Fiberboard by Coating (도장처리에 의한 무늬단판 오버레이 MDF의 표면물성)

  • Kim, Jong-In;Park, Jong-Young;Doh, Geum-Hyun;Joung, Doo-Jin;Park, Sang-Bum
    • Journal of the Korea Furniture Society
    • /
    • v.18 no.1
    • /
    • pp.13-19
    • /
    • 2007
  • The influences of coating on oak veneer overlaid Medium Density Fiberboard (MDF) were evaluated. The hardness of 9mm-MDF by hardness test were increased about 28% with coating on MDF and the more increased hardness of 31% with oak veneer overlaid MDF. The hardness of veneer overlaid MDF increased with increment of the veneer thickness and that of overlaid MDF showed the higher hardness compared to non-overlaid MDF. The optimum moisture content in terms of the hardness of panels MDF was in the range of 7% to 10% and the hardness was decreased with increasing of the moisture content. Any cracks were not overlaid coated on the MDF but the cracks were observed on the overlaid MDF after Soak under Vacuum Dry 10-cycle. The thicker veneer-overlaid MDF showed more cracks.

  • PDF

Microwave Moisture Measurement of Fine Aggregate in RMC Industry (마이크로웨이브를 이용한 콘크리트 잔골재 표면수율 측정 자동화)

  • Choi, Young-Choel;Lee, Bong-Chun;Moon, Gyu-Don;Son, Young-Jung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.63-69
    • /
    • 2012
  • Ready-mixed concrete(RMC) has been a major construction materials for infrastructures. However, RMC with poor quality is reported to be social issue since it directly user's safety and convenience. Because the properties of concrete as a construction material are greatly influenced by the variation of water content, to control water accurately is the most efficient method for the quality control in RMC industry. In this study, the automatic measurement technology of fine aggregate was developed by using the microwave moisture measurement. For the various conditions of fine aggregate such as moisture, temperature and pressure, the calibration curve of moisture measurement was obtained by using oven-dry method. From the infield and outfield test, it can be obtained that the accuracy of microwave moisture measurement is very high and the automatic system of microwave moisture measurement is very convenient and useful for quality control in RMC Industry.

Tracking Property of Polymer Suspension Insulator for Transmission line with secular variation (경년변화에 따른 송전용 폴리머 현수애자의 트래킹 성능평가)

  • Cho, Han-Goo;Lee, Un-Yong;Lee, You-Jung;Lim, Kee-Joe;Choi, In-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.558-559
    • /
    • 2005
  • Recently, polymer insulators that are used for high voltage applications have some advantages such as light weight, small size, vandalism resistance, hydrophobicity and easy making process. During outdoor service of polymer insulators, the surface of the insulating material is frequently subjected to moisture and contamination that lead to dry band arcing. Their tracking resistance, erosion resistance, end sealing and shed design are very important because dry band arcing causes degradation of polymer surface. In this paper, the tracking property of polymer suspension insulator for power transmission is investigated with CEA tracking wheel test. The diagnosis of insulator sample in tracking test has been analyzed by leakage current, STRI Guide, SEM, FTIR and thermal image.

  • PDF

The Effect of Delayed Compaction on Unconfined Compressive Strength of Soil-Cement Mixtures (지연다짐이 Soil-Cement의 압축강도에 미치는 영향)

  • 정일웅;김문기;도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.4
    • /
    • pp.66-76
    • /
    • 1986
  • This study was attempted to investigate the effects of delayed compaction on the unconfined compressive strengh and dry density of Soil-cement mixtures. Soil-cement construction is a time-consuming procedure. Time-delay is known as a detrimental factor to lower the quality of soil-cement layer. A laboratory test was performed using coarse and fine weathered granite soils. The soils were mixed with 7% cement at optimum moisture content and excess moisture content in part. Socondary additives such as lime, gypsum-plaster, flyash and sugar were tried to counteract the detri-mental effect of delayed compaction. The specimens were compacted by Harvard Miniature Compaction Apparatus at 0,1,2,4,6 hors after mixing. Two kinds of compactive efforts(9 kgf and 18 kgf tamper) were applied. The results were summarized as follows: 1.With the increase of time delay, the decrease rate of dry density of the specimen compacted by 9 kgf tamper was steeper than that of the specimen compacted by 18kgf tamper. In the same manner, soil-B had steeper decreasing rate of dry density than soil-A. 2.Based on the results of delayed compaction tests, the dry density and unconfined compressive sterngth were rapidly decreased in the early 2 hours delay, while those were slowly decreased during the time delay of 2 to 6 hours. 3.The dry density and unconfined compressive strength were increased by addition of 3% excess water to the optimum moisture content during the time delay of 2 to 6 hours. 4.Without time delay in compaction, the dry densities of soil-A were increased by adding secondary additives such as lime, gypsum-plaster, flyash and sugar, on the other hand, those of soil-B were decreased except for the case of sugar. 5.The use of secondary additives like lime, gypsum-plaster, flyash and sugar could reduce the decrease of unconfined compressive strength due to delayed compaction. Among them, lime was the most effective. 6.From the above mentioned results, several recommendations could be suggested in order to compensate for losses of unconfined compressive strenght and densit v due to delayed compaction. They are a) to use coarse-grained granite soil rather than fined-grained one, b) to add about 3% excess compaction moisture content, c) to increase compactive effort to a certain degree, and d) to use secondary additives like line gypsum-plaster, flyash, and sugar in proper quantity depending on the soil types.

  • PDF

Strength of Composit Single-lap Bonded Joints with Different Saltwater Moisture Contents (서로 다른 수분율을 갖도록 염수환경에 노출된 복합재 접착체결부의 강도)

  • Yang, Hyeon-Jeong;Jeong, Mun-Gyu;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.48-54
    • /
    • 2011
  • The effect of moisture contents by salt water on the strength of composite single-lap bonded joints is investigated. The specimens were manufactured in an autoclave by secondary bonding and immersed in the 3.5% salt water of $71^{\circ}C$ for different durations to get various moisture contents; 0, 0.2, 0.5, 1.0, and 2.0%(saturation). A total of 80 joint specimens were tested for 5 different moisture contents and 2 temperature environments. Test results show that while the joint strengths after the saturation of moisture decrease compared to those of dry ones, the strengths of the pre-saturated joint up to 1.0% of moisture content increase in both room and elevated temperature conditions. It is also shown that the strengths of joints tested in elevated temperature are slightly higher than the strength in room temperature by 2-5% until the moisture content reaches 1 %. In contrast, the high temperature strength of the saturated joint is about 5% lower than the room temperature strength.