• 제목/요약/키워드: Dry Calibration

검색결과 82건 처리시간 0.026초

TDR의 함수비 예측을 위한 새로운 보정방정식 (A New Calibration Equation for Predicting Water Contents With TDR)

  • 송민우;김대현;최찬용
    • 한국지반신소재학회논문집
    • /
    • 제14권1호
    • /
    • pp.59-65
    • /
    • 2015
  • TDR을 이용한 흙의 건조밀도와 함수비의 새로운 보정 방정식을 검증하기 위해 본 연구를 수행하였다. 기존의 보정 방정식이 제안되고 몇몇 연구자들에 의해 새로운 보정 방정식을 개발하는 연구가 진행되고 있다. 기존의 보정 방정식이 함수비가 높은 세립토와 느슨한 토질에서는 적용되기 어려워 새로운 보정 방정식을 개발하였다. 이에 따라 본 연구에서는 새로운 보정 방정식을 소개하고 기존의 실험과 비교해 새로운 보정방정식의 국내지반과의 적용성을 검토를 수행하였다. 그 결과 함수비의 보정방정식에 오차가 발생하여 함수비의 새로운 보정방정식을 개발하였고, 개발한 보정방정식을 검토한 결과 95%이상의 정확도를 보여준다.

간접 교정에 의한 다회선 초음파유량계 UR-1000 불확도 분석 (Uncertainty Analysis for the Multi-path Ultrasonic Flowmeter UR- 1000 with Dry Calibration)

  • 황상윤;박성하;박경암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.378-386
    • /
    • 2002
  • Multi-path ultrasonic Sow measurement system uncertainty is determined by assigning an expected error of each component of flow measurement and then defining the total flow measurement uncertainty as square root of the sum of squared values of the individual error. Sources of uncertainty for flow measurement are geometry, transit time and velocity profile integration uncertainty. A theoretical uncertainty model for multi-path ultrasonic transit time flowmeter configured with parallel 5 chords, is derived from and calculated by dry calibration method.

  • PDF

개념적 수문분할모형의 보정에 미치는 수문기후학적 조건의 영향 (Effects of Hydro-Climate Conditions on Calibrating Conceptual Hydrologic Partitioning Model)

  • 최정현;서지유;원정은;이옥정;김상단
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.568-580
    • /
    • 2020
  • Calibrating a conceptual hydrologic model necessitates selection of a calibration period that produces the most reliable prediction. This often must be chosen randomly, however, since there is no objective guidance. Observation plays the most important role in the calibration or uncertainty evaluation of hydrologic models, in which the key factors are the length of the data and the hydro-climate conditions in which they were collected. In this study, we investigated the effect of the calibration period selected on the predictive performance and uncertainty of a model. After classifying the inflows of the Hapcheon Dam from 1991 to 2019 into four hydro-climate conditions (dry, wet, normal, and mixed), a conceptual hydrologic partitioning model was calibrated using data from the same hydro-climate condition. Then, predictive performance and post-parameter statistics were analyzed during the verification period under various hydro-climate conditions. The results of the study were as follows: 1) Hydro-climate conditions during the calibration period have a significant effect on model performance and uncertainty, 2) calibration of a hydrologic model using data in dry hydro-climate conditions is most advantageous in securing model performance for arbitrary hydro-climate conditions, and 3) the dry calibration can lead to more reliable model results.

Estimation of Cell Concentration by Light Transmitter During the Culture of Methylotrophic Yeast Pichia pastoris

  • Choi, Du-Bok;Park, Enoch Y.S.;Lee, Yong-Bo;Na, Young-Hee;Lim, Chae-Kyu
    • Mycobiology
    • /
    • 제31권4호
    • /
    • pp.226-228
    • /
    • 2003
  • The multiple correlation coefficient between the values determined by dry weight and those determined by fluorometer was observed with r=0.96 and the standard error of calibration was 0.034. Using the best calibration data, in order to reconfirm the reliability of the fluorometer results in comparison with those obtained by dry weight on the cell concentration, fedbatch cultures were carried out. The results obtained by fluorometer measurements were in good agreement with those obtained by dry weight. The on-line monitoring of cell concentration by the fermentor system linked to a computer equipped with fluorometer was successfully carried out.

Study on Calibration Methods of Discharge Coefficient of Sonic Nozzles using Constant Volume Flow Meter

  • 정완섭;신진현;강상백;박경암;임종연
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.17-17
    • /
    • 2010
  • This paper address technical issues in calibrating discharge coefficients of sonic nozzles used to measure the volume flow rate of low vacuum dry pumps. The first challenging issue comes from the technical limit that their calibration results available from the flow measurement standard laboratories do not fully cover the low vacuum measurement range although the use of sonic nozzles for precision measurement of gas flow has been well established in NMIs. The second is to make an ultra low flow sonic nozzlesufficient to measure the throughput range of 0.01 mbar-l/s. Those small-sized sonic nozzles do not only achieve the noble stability and repeatability of gas flow but also minimize effects of the fluctuation of down stream pressures for the measurement of the volume flow rate of vacuum pumps. These distinctive properties of sonic nozzles are exploited to measure the pumping speed of low vacuum dry pumps widely used in the vacuum-related academic and industrial sectors. Sonic nozzles have been standard devices for measurement of steady state gas flow, as recommended in ISO 9300. This paper introduces two small-sized sonic nozzles of diameter 0.03 mm and 0.2 mm precisely machined according to ISO 9300. The constant volume flow meter (CVFM) readily set up in the Vacuum center of KRISS was used to calibrate the discharge coefficients of the machined nozzles. The calibration results were shown to determine them within the 3% measurement uncertainty. Calibrated sonic nozzles were found to be applicable for precision measurement of steady state gas flow in the vacuum process. Both calibrated sonic nozzles are demonstrated to provide the precision measurement of the volume flow rate of the dry vacuum pump within one percent difference in reference to CVFM. Calibrated sonic nozzles are applied to a new 'in-situ and in-field' equipment designed to measure the volume flow rate of low vacuum dry pumps in the semiconductor and flat display processes.

  • PDF

대기 중 온실가스 농도 관측 장비 성능 비교 검증 (Assessment of Atmospheric Greenhouse Gas Concentration Equipment Performance)

  • 박채린;정수종;정승현;이정일;김인선;임철수
    • 대기
    • /
    • 제33권5호
    • /
    • pp.549-560
    • /
    • 2023
  • This study evaluates three distinct observation methods, CRDS, OA-ICOS, and OF-CEAS, in greenhouse gas monitoring equipment for atmospheric CO2 and CH4 concentrations. The assessment encompasses fundamental performance, high-concentration measurement accuracy, calibration methods, and the impact of atmospheric humidity on measurement accuracy. Results indicate that within a range of approximately 500 ppm, all three devices demonstrate high accuracy and linearity. However, beyond 1000 ppm, CO2 accuracy sharply declines (84%), emphasizing the need for caution when interpreting high-concentration CO2 data. An analysis of calibration methods reveals that both CO2 and CH4 measurements achieve high accuracy and linearity through 1-point calibration, suggesting that multi-point calibration is not imperative for precision. In dynamic atmospheric conditions with significant CO2 and CH4 concentration variations, a 1-point calibration suffices for reliable data (99% accuracy). The evaluation of humidity impact demonstrates that humidity removal devices significantly reduce air moisture levels, yet this has a negligible effect on dry CO2 concentrations (less than 0.5% relative error). All three observation method instruments, which have integrated humidity correction to calculate dry CO2 concentrations, exhibit minor sensitivity to humidity removal devices, implying that additional removal devices may not be essential. Consequently, this study offers valuable insights for comparing data from different measurement devices and provides crucial information to consider in the operation of monitoring sites.

MCNP4A 전산코드를 이용한 중성자 수분함량 측정기의 교정식 및 교정상수 도출방법 연구 (A Study on Calibration of Neutron Moisture Gauge Using MCNP4A)

  • 황주호;임천일;송정호
    • Journal of Radiation Protection and Research
    • /
    • 제22권4호
    • /
    • pp.289-298
    • /
    • 1997
  • 중성자 수분함량 측정기의 개발에 있어서 중성자 계측값과 흙속의 수분함량에 대한 관계식을 유도하기 위해서는 공시체 제작 등의 많은 실험을 통해 유도한 교정식이 필요하다. 또한 공시체 제작 및 측정실험의 통계적 오차를 줄이기 위해서는 많은 시간과 노력이 필요하다. 하지만 몬테카를로방법을 사용한 전산코드를 이용하여 수행할 경우 시간과 노력을 줄일 수 있을 뿐만 아니라, 보다 일반적인 흙에 대한 교정식을 얻을 수 있다. 본 연구에서는 중성자의 수송문제를 계산하는데 유용한 MCNP4A 전산코드를 이용하여 실제 실험을 모사하였다. 또한 모사결과를 공시체를 제작하여 실험한 결과와 비교하였다. 비교결과 실제실험의 결과와 모사 범위 내에서 일치함을 알 수 있었다. 중성자 수분함량 측정기의 교정식 도출 및 교정상수를 결정하기 위해 적용할 수 있음을 알 수 있었다. 또한 수분함량 측정기의 계측값에 영향을 미치는 인자중의 하나인 흙의 건조밀도 변화에 대한 영향을 살펴보았다.

  • PDF

Application of near-infrared spectroscopy for hay evaluation at different degrees of sample preparation

  • Eun Chan Jeong;Kun Jun Han;Farhad Ahmadi;Yan Fen Li;Li Li Wang;Young Sang Yu;Jong Geun Kim
    • Animal Bioscience
    • /
    • 제37권7호
    • /
    • pp.1196-1203
    • /
    • 2024
  • Objective: A study was conducted to quantify the performance differences of the near-infrared spectroscopy (NIRS) calibration models developed with different degrees of hay sample preparations. Methods: A total of 227 imported alfalfa (Medicago sativa L.) and another 360 imported timothy (Phleum pratense L.) hay samples were used to develop calibration models for nutrient value parameters such as moisture, neutral detergent fiber, acid detergent fiber, crude protein, and in vitro dry matter digestibility. Spectral data of hay samples prepared by milling into 1-mm particle size or unground were separately regressed against the wet chemistry results of the abovementioned parameters. Results: The performance of the developed NIRS calibration models was evaluated based on R2, standard error, and ratio percentage deviation (RPD). The models developed with ground hay were more robust and accurate than those with unground hay based on calibration model performance indexes such as R2 (coefficient of determination), standard error, and RPD. Although the R2 of calibration models was mainly greater than 0.90 across the feed value indexes, the R2 of cross-validations was much lower. The R2 of cross-validation varies depending on feed value indexes, which ranged from 0.61 to 0.81 in alfalfa, and from 0.62 to 0.95 in timothy. Estimation of feed values in imported hay can be achievable by the calibrated NIRS. However, the NIRS calibration models must be improved by including a broader range of imported hay samples in the modeling. Conclusion: Although the analysis accuracy of NIRS was substantially higher when calibration models were developed with ground samples, less sample preparation will be more advantageous for achieving rapid delivery of hay sample analysis results. Therefore, further research warrants investigating the level of sample preparations compromising analysis accuracy by NIRS.

USE OF NEAR-INFRARED SPECTROSCOPY TO PREDICT OIL CONTENT COMPONENTS AND FATTY ACID COMPOSITION IN OLIVE FRUIT

  • Lorenzo, Leon-Moreno;Ana, Garrido-Varo;Luis, Rallo-Romero
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1512-1512
    • /
    • 2001
  • The University of Cordoba conducts since 1991 a breeding program to obtain new olive cultivars from intraspecific crosses. The objective is to obtain new early bearing and high-quality cultivars. In plant breeding, many seedlings must be tested to increased the chance of getting desirable genotypes. Therefore, fast, cheap and accurate methods of analysis are necessary. The conventional laboratory techniques are costly and time-consuming. Near Infrared Spectroscopy (NIRS) can satisfy the characteristics requested by plant breeders and offers many advantages such as the simultaneous analysis of many traits and cheap cost. The objective of this work was to asses the performance of NIRS to estimate oil fruit components (fruit weight, flesh moisture, flesh/stone ratio and oil flesh content in dry weight basis) and fatty acid composition in olive fruit. Genotypes from reciprocal crosses between ‘Arbequina’, ‘Frantoio’ and ‘Picual’ cultivars have been used in this study. A total of 287 samples, each from a single plant, were scanned using a DA-7000 Diode Array VIS/NIR Analysis System (Perten Instruments), which covers the visible and NIR range from 400-1700 nm. All samples were analysed for fatty acid composition (gas chromatography) and 220 for oil fruit components (oil content by nuclear magnetic resonance), 70% and 30% of samples were randomly assign for the calibration and validation sets respectively. The preliminary results shows that calibration for palmitic, oleic and linoleic acids were highly accurate with calibration and validation values of $r^2$ from 0.85 to 0.95 and 0.76 to 0.91 respectively. Calibration for palmitoleic and estearic acids were less accurate, probably because of the narrow range of variability available for these fatty acids. For the oil fruit components, calibration were high accurate for flesh moisture and oil flesh content in dry weight basis ($r^2$ higher than 0.90 in both calibration and validation sets) and less accurate for the other characteristics evaluated. The first results obtained indicate that NIRS analysis could be an ideal technique to reduce the cost, time and chemical wasted necessary to evaluate a large number of genotypes and it is accurate enough to use for pre-selecting genotypes in a breeding program.

  • PDF

Measurement of lipid content of compost fermentation using near-infrared spectroscopy

  • Daisuke Masui;Suehara, Ken-ichiro;Yasuhisa Nakano;Takuo Yano
    • Near Infrared Analysis
    • /
    • 제2권1호
    • /
    • pp.37-42
    • /
    • 2001
  • Near infrared spectroscopy (NIRS) was applied to determination of the lipid content of the compost during the compost fermentation of tofu (soybean0curd) refuse. The absorption of lipid observed at 5 wavelengths, 1208, 1712, 1772, 2312 and 2352 nm on the second derivative spectra. To formulated a calibration equation, a multiple linear regression analysis was carried out between the near-infrared spectral data and on the lipid content in the calibration sample set (sample number, n=60) obtained using Soxhlet extraction method. The value of the multiple correlation coefficient (R) was 0.975 when using the wavelengths of 1208 and 1712 nm were used in the calibration equation. To validate the calibration equation obtained, the lipid content in the validation sample set (n=35) not used for formulating the calibration equation was calculated using the calibration equation, and compared with the value obtained using the Soxhlet extraction method. Good agreement was observed between the results of the Soxhlet extraction method and those values of the NIRS method. The simple correlation coefficient (r) and standard error of prediction (SEP) were 0.964 and 0.815 %, respectively. suitability of the lipid content as an indicator of the compost fermentation of tofu refuse was also studied. The decrease of the lipid content in the compost corresponded to the decrease of the total dry weight of the compost in the composter. The lipid content was a significant indicator of the compost fermentation. The NIRS method was applied to measure the time course of the lipid content in the compost fermentation and good results were obtained. The study indicates that NIRS is a useful method for process management of the compost fermentation of tofu refuse.