• Title/Summary/Keyword: Drum Evaporator

Search Result 6, Processing Time 0.021 seconds

Performance Characteristics of Two-stage Compression Seawater Ice Machine Applied Drum type Evaporator (드럼형 증발기를 적용한 2단 압축 해수 제빙시스템의 성능 특성)

  • Son, Chang-Hyo;Yoon, Jeong-In;Jeon, Min-Ju;Lee, Hyun-Kyung;Heo, Seong-Kwan
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • In the fishing boat, freshwater ice is loaded on the fishroom in advance and it is used for storage of fishes. However, it causes degradation of catches' freshness. Therefore, seawater ice machine on board is necessary for the fishing industry. In this study, seawater ice machine with drum type evaporator was manufactured, and the system was tested under various operating conditions having an influence on the COP and amount of ice produced. The main results are as follow : The COP of the system gets larger when the evaporation temperature and rotation speed of the drum in the evaporator increases. The most effective refrigerant is R22 and the value of the COP was 1.43 times higher than that of R404A. The amount of produced ice increases with respect to increment of the evaporation temperature, while that decreases with respect to increment of the evaporator drum rotation speed.

EDDC deposition system for 100m long superconducting coated conductor (100m 급 초전도선재 제조용 EDDC 증착시스템)

  • Kim, Ho-Sup;Ha, Hong-Soo;Oh, Sang-Soo;Ko, Rock-Kil;Yang, Ju-Saeng;Kim, Tae-Hyung;Song, Kyu-Jeong;Ha, Dong-Woo;Park, Yu-Mi;Youm, Do-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.18-19
    • /
    • 2005
  • EDDC(Evaporation using Drum in Dual Chamber) deposition system was manufactured for 100m long superconducting coated conductor. It is composed of reaction chamber, evaporation chamber and differential chamber. The drum is located across the differential and exposed to both of the evaporation chamber and the reaction chamber, and the tape is wound on the drum. The elements of superconducting material are co-evaporated from respective element boats in the evaporation chamber and deposited on the drum and reacted with oxygen in the reaction chamber. This process repeats by rotating the drum. When the total pressure of the reaction chamber was 5 mTorr, that of the evaporation chamber was $5{\sim}10^{-5}$Torr. This atmosphere can be achieved by means of differential pumping. There are four evaporator in the evaporation chamber. One is the radiation heating evaporator and the others are the high frequency induction evaporator. EDDC is one of promising methods for commercialization of superconducting coated conductor.

  • PDF

STEAM DRUM DESIGN FOR A HRSG BASED ON CFD (수치해석을 이용한 HRSG(Heat Recovery Steam Generator) 증기 드럼 설계)

  • Ahn, J.;Lee, Y.S.;Kim, J.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.67-72
    • /
    • 2011
  • HRSG (Heat Recovery Steam Generator) is a boiler to recover heat from the exhaust gas of an engine and to generate steam for more power generation or process. For the HRSG, water-tube type boiler is commonly adopted to accommodate the working pressure or capacity requirement of the system. The water-tube type boiler has a steam drum to separate steam from the water-steam mixture supplied from the evaporator tube (riser). The drum should be sized properly to separate the steam by the gravity and auxiliary internals, such as a demister, which are installed to filter the steam. To size the steam drum and to estimate the filter efficiency of drum internals, the velocity distribution inside the drum needs to be identified. In the present study, a series of CFD has been conducted to find the velocity distributions inside steam drums for conventional HRSGs and water-tube type industrial boilers. The velocity distributions obtained from the simulation have been normalized and a correlation to predict them has been found. The correlation is applied to the steam drum design by determining a proper position of a demister to show proper separation performance.

Experimental Study for Investigating the Optimum Operating Conditions of a Seawater Ice Machine (해수제빙장치의 최적 운전 조건 탐색을 위한 실험적 연구)

  • Li, H.;Joo, W.J.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.76-82
    • /
    • 2010
  • This paper investigates the optimum operating conditions to construct total automatic control system with high energy efficiency of a newly developed seawater ice machine. The machine has an electronic expansion valve(EEV) and a variable speed rotating drum with an evaporator installed inside. The coefficient of performance(COP) was used as an index to evaluate energy efficiency of the machine. At first, the opening angle of EEV was adjusted to obtain COP of the machine at a constant speed of the drum. Then, we checked seawater ice product versus opening angles of the EEV. Finally, effect of drum's rotating speed in response to product of seawater ice and seawater ice temperature were considered.

pH Control of Feed Water for HRSG with Additional Injection of NH3 (암모니아 추가 주입에 의한 배열회수보일러 급수의 수소이온농도 조절)

  • Mok, Yong-kang;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.11 no.2
    • /
    • pp.32-38
    • /
    • 2015
  • This study was conducted on combined cycle power plant consisting of HRSG with integral deaerator type to avoid tube failures of low pressure evaporator tubes. Based on the observation of pH variation at the discharge of boiler feed water pump by continuous pH measurement for a period of time, it was identified that pH of feed water is getting reduced as ammonia is distributed into vapor and liquid depending on the distribution ratio of ammonia in the LP drum after the deaerator. To solve this problem, the counterplan was prepared by reexamination of ammonia injection point and quantity. In conclusion, it was accomplished that 9.2~9.6 is the optimized pH range for boiler feed water by arranging additional piping for ammonia to inject directly to LP drum.

  • PDF

A Feasibility Study on the Polymer Solidification of Evaporator Concentrated Wastes (폐액증발기 농축폐액 폴리머고화 타당성 연구)

  • Yang, Ho-Yeon;Kim, Ju-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.297-308
    • /
    • 2007
  • The granulation equipment of concentrated wastes is manufactured for the polymer solidification of concentrated wastes. It uses liquid sodium silicate as a granulating agent for the granulating of dried powder containing boric acid. The granulating agent is sprayed in the form of droplet and mean size of dried granules is $2{\sim}4mm$. The new technology which has been used for the polymer solidification of spent resin in U.S. and certified by Nuclear Regulatory Commission (NRC) is successfully applied to concentrated wastes. This uses in-situ solidification process within drum without mechanical mixing. Maximum loading of waste can be achieved without increasing of waste volume. Polymer waste forms were evaluated with several test such as fire test, compressive strength test, leaching test, immersion test, irradiation test, and thermal cycling test according to standard test procedures.

  • PDF