• Title/Summary/Keyword: Drug-interaction

Search Result 595, Processing Time 0.027 seconds

Effect of Red Ginseng on cytochrome P450 and P-glycoprotein activities in healthy volunteers

  • Kim, Dal-Sik;Kim, Yunjeong;Jeon, Ji-Young;Kim, Min-Gul
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.375-381
    • /
    • 2016
  • Background: We evaluated the drug interaction profile of Red Ginseng (RG) with respect to the activities of major cytochrome P450 (CYP) enzymes and the drug transporter P-glycoprotein (P-gp) in healthy Korean volunteers. Methods: This article describes an open-label, crossover study. CYP probe cocktail drugs, caffeine, losartan, dextromethorphan, omeprazole, midazolam, and fexofenadine were administered before and after RG supplementation for 2 wk. Plasma samples were collected, and tolerability was assessed. Pharmacokinetic parameters were calculated, and 90% confidence intervals (CIs) of the geometric mean ratios of the parameters were determined from logarithmically transformed data using analysis of variance after RG administration versus before RG administration. Results: Fourteen healthy male participants were evaluated, none of whom were genetically defined as poor CYP2C9, 2C19, and CYP2D6 metabolizers based on genotyping. Before and after RG administration, the geometric least-square mean metabolic ratio (90% CI) was 0.870 (0.805-0.940) for caffeine to paraxanthine (CYP1A2), 0.871 (0.800-0.947) for losartan (CYP2C9) to EXP3174, 1.027 (0.938-1.123) for omeprazole (CYP2C19) to 5-hydroxyomeprazole, 1.373 (0.864-2.180) for dextromethorphan to dextrorphan (CYP2D6), and 0.824 (0.658-1.032) for midazolam (CYP3A4) to 1-hydroxymidazolam. The geometric mean ratio of the area under the curve of the last sampling time ($AUC_{last}$) for fexofenadine (P-gp) was 0.963 (0.845-1.098). Administration of concentrated RG for 2 wk weakly inhibited CYP2C9 and CYP3A4 and weakly induced CYP2D6. However, no clinically significant drug interactions were observed between RG and CYP and P-gp probe substrates. Conclusion: RG has no relevant potential to cause CYP enzyme- or P-gp-related interactions.

In vitro Assessment of Cytochrome P450 Inhibition by Red Ginseng Ginsenosides (홍삼 Ginsenoside의 Cytochrome P450 저해 활성 평가)

  • Ryu, Chang Seon;Shin, Jang Hyun;Shin, Byoung Chan;Sim, Jae Han;Yang, Hyeon Dong;Lee, Sung Woo;Kim, Bong-Hee
    • YAKHAK HOEJI
    • /
    • v.59 no.2
    • /
    • pp.49-54
    • /
    • 2015
  • In the present study we evaluated comparative herb-drug interaction potential of red ginseng total powder, ginsenoside Rg1, and Rb1 by inhibition of CYP isoforms including CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4 using pooled human liver microsomes (HLMs). As measured by liquid chromatography-electrospray ionization tandem mass spectrometry, red ginseng total powder inhibited significantly activities of CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and testosterone 6-beta hydroxylation by CYP3A4, but the $IC_{50}$ values were higher than $556{\mu}g/ml$. Activities of CYP2B6, CYP2C9, CYP2D6 and CYP3A4 were inhibited by ginsenoside Rb1. Also, activities of CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6 and testosterone 6-beta hydroxylation by CYP3A4 were inhibited by ginsenoside Rg1. The $IC_{50}$ values of ginsenoside Rb1 and Rg1 were higher than $200{\mu}g/ml$. Based on $IC_{50}$ values against CYP isoforms, ginsenosides-drug interactions by CYP inhibition may be very low in clinical situations.

Identification of novel potential drugs and miRNAs biomarkers in lung cancer based on gene co-expression network analysis

  • Sara Hajipour;Sayed Mostafa Hosseini;Shiva Irani;Mahmood Tavallaie
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.38.1-38.8
    • /
    • 2023
  • Non-small cell lung cancer (NSCLC) is an important cause of cancer-associated deaths worldwide. Therefore, the exact molecular mechanisms of NSCLC are unidentified. The present investigation aims to identify the miRNAs with predictive value in NSCLC. The two datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEmiRNA) and mRNAs (DEmRNA) were selected from the normalized data. Next, miRNA-mRNA interactions were determined. Then, co-expression network analysis was completed using the WGCNA package in R software. The co-expression network between DEmiRNAs and DEmRNAs was calculated to prioritize the miRNAs. Next, the enrichment analysis was performed for DEmiRNA and DEmRNA. Finally, the drug-gene interaction network was constructed by importing the gene list to dgidb database. A total of 3,033 differentially expressed genes and 58 DEmiRNA were recognized from two datasets. The co-expression network analysis was utilized to build a gene co- expression network. Next, four modules were selected based on the Zsummary score. In the next step, a bipartite miRNA-gene network was constructed and hub miRNAs (let-7a-2-3p, let-7d-5p, let-7b-5p, let-7a-5p, and let-7b-3p) were selected. Finally, a drug-gene network was constructed while SUNITINIB, MEDROXYPROGESTERONE ACETATE, DOFETILIDE, HALOPERIDOL, and CALCITRIOL drugs were recognized as a beneficial drug in NSCLC. The hub miRNAs and repurposed drugs may act a vital role in NSCLC progression and treatment, respectively; however, these results must validate in further clinical and experimental assessments.

Effect of Specific Interaction of Multi-Ligands on the Specific Interaction between Particle and Cell (멀티 리간드의 특이적 상호작용이 입자-세포간 상호작용에 미치는 영향)

  • Yoon, Jung Hyun;Lee, Sei Young
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.94-101
    • /
    • 2022
  • Recent advancement of micro/nano technology enables the development of diverse micro/nano particle-based delivery systems. Due to the multi-functionality and engineerability, particle-based delivery system are expected to be a promising method for delivery to the target cell. Since the particle-based delivery system should be delivered to the various kinds of target cell, including the cardiovascular system, cancer cell etc., it is frequently decorated with multiple kinds of targeting molecule(s) to induce specific interaction to the target cell. The surface decorated molecules interact with the cell surface expressed molecule(s) to specifically form a firm adhesion. Thus, in this study, the probability of adhesion is estimated to predict the possibility to form a firm adhesion for the multi-ligand decorated particle-based delivery system.

Self-Nanoemulsifying Drug Delivery System of Lutein: Physicochemical Properties and Effect on Bioavailability of Warfarin

  • Yoo, Juno;Baskaran, Rengarajan;Yoo, Bong-Kyu
    • Biomolecules & Therapeutics
    • /
    • v.21 no.2
    • /
    • pp.173-179
    • /
    • 2013
  • Objective of present study was to prepare and characterize self-nanoemulsifying drug delivery system (SNEDDS) of lutein and to evaluate its effect on bioavailability of warfarin. The SNEDDS was prepared using an oil, a surfactant, and co-surfactants with optimal composition based on pseudo-ternary phase diagram. Effect of the SNEDDS on the bioavailability of warfarin was performed using Sprague Dawley rats. Lutein was successfully formulated as SNEDDS for immediate self-emulsification and dissolution by using combination of Peceol as oil, Labrasol as surfactant, and Transcutol-HP or Lutrol-E400 as co-surfactant. Almost complete dissolution was achieved after 15 min while lutein was not detectable from the lutein powder or intra-capsule content of a commercial formulation. SNEDDS formulation of lutein affected bioavailability of warfarin, showing about 10% increase in $C_{max}$ and AUC of the drug in rats while lutein as non-SNEDDS did not alter these parameters. Although exact mechanism is not yet elucidated, it appears that surfactant and co-surfactant used for SNEDDS formulation caused disturbance in the anatomy of small intestinal microvilli, leading to permeability change of the mucosal membrane. Based on this finding, it is suggested that drugs with narrow therapeutic range such as warfarin be administered with caution to avoid undesirable drug interaction due to large amount of surfactants contained in SNEDDS.

Rheological Behavior of Poloxamer 407 Solution and Effect of Poly(ethylene glycol) on the Gelation

  • Lee, Ka-Young;Cho, Cheong-Weon;Lee, Yong-Bok;Shin, Sang-Chul;Oh, In-Joon
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • The rheological behavior of poloxamer 407 solution as function of concentration and temperature was evaluated by rotational viscometer. The viscosity of poloxamer 407 solution was increased as the concentration of poloxamer 407 and temperature increased. At $4^{\circ}C$, poloxamer 407 solution showed the Newtonian flow characteristics regardless of concentration. Upon increasing temperature the poloxamer solution changed to the pseudoplastic flow pattern. And at gelation temperature, rheological profiles showed the abrupt increase in viscosity. Gelation temperature was decreased as the concentration of poloxamer 407 increased, while it increased as the concentration of poly(ethylene glycol) 4000 increased. Poly(ethylene glycol) might be expected to reduce the driving force for hydrophobic interaction resulting in slow gelation. From the viscoelastic properties of poloxamer gel system, we obtained the storage and loss modulus depending on the shear stress and frequency. And the sol-gel transition temperature was also obtained from the viscoelastic properties of poloxamer 407 gel.

Relationships between genetic polymorphisms and transcriptional profiles for outcome prediction in anticancer agent treatment

  • Paik, Hyo-Jung;Lee, Eun-Jung;Lee, Do-Heon
    • BMB Reports
    • /
    • v.43 no.12
    • /
    • pp.836-841
    • /
    • 2010
  • In the era of personal genomics, predicting the individual response to drug-treatment is a challenge of biomedical research. The aim of this study was to validate whether interaction information between genetic and transcriptional signatures are promising features to predict a drug response. Because drug resistance/susceptibilities result from the complex associations of genetic and transcriptional activities, we predicted the inter-relationships between genetic and transcriptional signatures. With this concept, captured genetic polymorphisms and transcriptional profiles were prepared in cancer samples. By splitting ninety-nine samples into a trial set (n = 30) and a test set (n = 69), the outperformance of relationship-focused model (0.84 of area under the curve in trial set, P = $2.90{\times}10^{-4}$) was presented in the trial set and validated in the test set, respectively. The prediction results of modeling show that considering the relationships between genetic and transcriptional features is an effective approach to determine outcome predictions of drug-treatment.

Estrogen Receptor α Regulates Dlx3-Mediated Osteoblast Differentiation

  • Lee, Sung Ho;Oh, Kyo-Nyeo;Han, Younho;Choi, You Hee;Lee, Kwang-Youl
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.156-162
    • /
    • 2016
  • Estrogen receptor ${\alpha}$ (ER-${\alpha}$), which is involved in bone metabolism and breast cancer, has been shown to have transcriptional targets. Dlx3 is essential for the skeletal development and plays an important role in osteoblast differentiation. Various osteogenic stimulators and transcription factors can induce the protein expression of Dlx3. However, the regulatory function of ER-${\alpha}$ in the Dlx3 mediated osteogenic process remains unknown. Therefore, we investigated the regulation of Dlx3 and found that ER-${\alpha}$ is a positive regulator of Dlx3 transcription in BMP2-induced osteoblast differentiation. We also found that ER-${\alpha}$ interacts with Dlx3 and increases its transcriptional activity and DNA binding affinity. Furthermore, we demonstrated that the regulation of Dlx3 activity by ER-${\alpha}$ is independent of the ligand (estradiol) binding domain. These results indicate that Dlx3 is a novel target of ER-${\alpha}$, and that ER-${\alpha}$ regulates the osteoblast differentiation through modulation of Dlx3 expression and/or interaction with Dlx3.

Drug Release Control of Poloxamer-Poly(acrylic acid) Interpenetrating Polymer Networks (폴록사머-폴리아크릴산 IPNs의 약물 조절 방출)

  • Byun, Eun-Jung;Park, Joo-Ae;Lee, Seung-Jin;Kim, Kil-Soo
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.22-29
    • /
    • 1997
  • Poloxamer-poly (acrylic acid) (PAA) interpenetrating polymer networks (IPNs) were prepared via matrix polymerization of acrylic acid with poloxamer prepolymer. The equilibrium s welling of poloxamer/PAA IPNs was determined in various pH medium. The swelling of poloxamer/PAA IPNs was more affected by pH difference compared with the swelling of homo PAA gel due to protonation and deprotonation of the PAA network, followed by reversible formation and dissociation of the interpolymer complex due to hydrogen bonding between acidic hydrogens and ether oxygens. Nonionic/anionic/cationic drugs were incorporated into IPN matriceds as a model drug and their release behavior was studied. Nonionic, drug revealed release patterns depending solely on pH dependent swelling kinetics. In contrast, the release of ionic drugs was significantly affected by ionic drug-polymer interaction as well as the swelling kinetics.

  • PDF

In-silico Modeling of Chemokine Receptor CCR2 And CCR5 to Assist the Design of Effective and Selective Antagonists

  • Kothandan, Gugan;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.5 no.1
    • /
    • pp.32-37
    • /
    • 2012
  • Chemokine receptor antagonists have potential applications in field of drug discovery. Although the chemokine receptors are G-protein-coupled receptors, their cognate ligands are small proteins (8 to 12 kDa), and so inhibiting the ligand/receptor interaction has been challenging. The application of structure-based in-silico methods to drug discovery is still considered a major challenge, especially when the x-ray structure of the target protein is unknown. Such is the case with human CCR2 and CCR5, the most important members of the chemokine receptor family and also a potential drug target. Herein, we review the success stories of combined receptor modeling/mutagenesis approach to probe the allosteric nature of chemokine receptor binding by small molecule antagonists for CCR2 and CCR5 using Rhodopsin as template. We also urged the importance of recently available ${\beta}2$-andrenergic receptor as an alternate template to guide mutagenesis. The results demonstrate the usefulness and robustness of in-silico 3D models. These models could also be useful for the design of novel and potent CCR2 and CCR5 antagonists using structure based drug design.