• Title/Summary/Keyword: Drug toxicity

Search Result 706, Processing Time 0.024 seconds

Genetic Toxicity Test of o-Nitrotoluene by Ames, Micronucleus, Comet Assays and Microarray Analysis

  • Lee, Eun-Mi;Lee, So-Youn;Lee, Woo-Sun;Kang, Jin-Seok;Han, Eui-Sik;Go, Seo-Youn;Sheen, Yhun-Yong;Kim, Seung-Hee;Park, Sue-Nie
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.107-112
    • /
    • 2007
  • o-Nitrotoluene is used to synthesize artificial dyes and raw materials of urethane resin. In this study, we have carried out in vitro genetic toxicity tests and microarray analysis to understand the underlying mechanisms and the mode of action of toxicity of onitrotoluene. TA1535 and TA98 cells were treated with o-nitrotoluene to test its toxicity by basic genetic toxicity test. Ames and two new in vitro micronucleus and COMET assays were applied using CHO cells and L5178Y cells, respectively. In addition, microarray analysis of differentially expressed genes in L5178Y cells in response to o-nitrotoluene was analyzed using Affymatrix genechip. The result of Ames test was that o-nitrotoluene treatment did not increase the mutations both in base substitution strain TA1535 and in frame shift TA98. o-Nitrotoluene has not increased micronuclei in CHO cells. But onitrotoluene increased DNA damage in L5178Y cell. Two-hundred two genes were initially selected as differentially expressed genes in response to o-nitrotoluene by microarray analysis and forty four genes among them were over 2 times of log fold changed. These forty four genes could be candidate biomarkers of genetic toxic action of o-nitrotoluene related to induction of mutation and/or induction of micronuclei and DNA damage. Further confirmation of these candidate markers related to the DNA damage will be useful to understand the detailed mechanism of action of o-nitrotoluene.

Genetic Toxicity Test of 8-Hydroxyquinoline by Ames, Micronucleus, Comet Assays and Microarray Analysis

  • Lee, Woo-Sun;Kim, Hyun-Joo;Lee, Eun-Mi;Kim, Joo-Hwan;Suh, Soo-Kyung;Kwon, Kyung-Jin;Sheen, Yhun-Yong;Kim, Seung-Hee;Park, Sue-N.
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.90-97
    • /
    • 2007
  • 8-Hydroxyquinoline is used as antibacterial agent and antioxidant based on its function inducing the chelation of ferrous ion present in host resulting in production of chelated complex. This complex being transported to cell membrane of bacteria and fungi exerts antibacterial and antifungal action. In this study, we have carried out in vitro genetic toxicity tests and microarray analysis to understand the underlying mechanisms and the mode of action of toxicity of 8-hydroxyquinoline. TA1535 and TA98 cells were treated with 8-hydroxyquinoline to test its toxicity by basic genetic toxicity test, Ames and two new in vitro micronucleus and COMET assays were applied using CHO cells and L5178Y cells, respectively. In addition, microarray analysis of differentially expressed genes in L5178Y cells in response to 8-hydroxyquinoline were analyzed using Affymatrix genechip. The result of Ames test was that 8-hydroxyquinoline treatment increased the mutations in base substitution strain TA1535 and likewise, 8-hydroxyquinoline also increased mutations in frame shift TA98. 8-Hydroxyquinoline increased micronuclei in CHO cells and DNA damage in L5178Y. 8-Hdroxyquinoline resulted in positive response in all three tests showing its ability to induce not only mutation but also DNA damage. 783 Genes were initially selected as differentially expressed genes in response to 8-hydroxyquinoline by microarray analysis and 34 genes among them were over 4 times of log fold changed. These 34 genes could be candidate biomarkers of genetic toxic action of 8-hydroxyquinoline related to induction of mutation and/or induction of micronuclei and DNA damage. Further confirmation of these candidate markers related to their biological function will be useful to understand the detailed mode of action of 8-hydroxyquinoline.

Toxicological Relevance of Transporters

  • Maeng, Han-Joo;Chung, Suk-Jae
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • Transporters are membrane proteins that mediate the transfer of substrate across the cellular membrane. In this overview, the characteristics and the toxicological relevance were discussed for various types of transporters. For drug transporters, the overview focused on ATP-binding cassette transporters and solute carrier family 21A/22A member transporters. Except for OCTN transporters and OATP transporters, drug transporters tend to have broad substrate specificity, suggesting drug-drug interaction at the level of transport processes (e.g., interaction between methotrexate and non-steroidal anti-inflammatory agents) is likely. For metal transporters, transporters for zinc, copper and multiple metals were discussed in this overview. These metal transporters have comparatively narrow substrate specificity, except for multiple metal transporters, suggesting that inter-substrate interaction at the level of transport is less likely. In contrast, the expressions of the transporters are often regulated by their substrates, suggesting cellular adaptation mechanism exists for these transporters. The drug-drug interactions in drug transporters and the cellular adaptation mechanisms for metal transporters are likely to lead to alterations in pharmacokinetics and cellular metal homeostasis, which may be linked to the development of toxicity. Therefore, the transporter-mediated alterations may have toxicological relevance.

Drug-Induced Nephrotoxicity and Its Biomarkers

  • Kim, Sun-Young;Moon, A-Ree
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.268-272
    • /
    • 2012
  • Nephrotoxicity occurs when kidney-specific detoxification and excretion do not work properly due to the damage or destruction of kidney function by exogenous or endogenous toxicants. Exposure to drugs often results in toxicity in kidney which represents the major control system maintaining homeostasis of body and thus is especially susceptible to xenobiotics. Understanding the toxic mechanisms for nephrotoxicity provides useful information on the development of drugs with therapeutic benefits with reduced side effects. Mechanisms for drug-induced nephrotoxicity include changes in glomerular hemodynamics, tubular cell toxicity, inflammation, crystal nephropathy, rhabdomyolysis, and thrombotic microangiopathy. Biomarkers have been identified for the assessment of nephrotoxicity. The discovery and development of novel biomarkers that can diagnose kidney damage earlier and more accurately are needed for effective prevention of drug-induced nephrotoxicity. Although some of them fail to confer specificity and sensitivity, several promising candidates of biomarkers were recently proved for assessment of nephrotoxicity. In this review, we summarize mechanisms of drug-induced nephrotoxicity and present the list of drugs that cause nephrotoxicity and biomarkers that can be used for early assessment of nephrotoxicity.

A Study on Acute Oral Toxicity of Pyungwi-san and Fermented Pyungwi-san in ICR Mice (ICR 마우스를 이용한 평위산과 발효평위산 급성독성 연구)

  • Jang, Doo-Rye;Hwang, Youn-Hwan;Jung, Ki-Youn;Ha, Jeong-Ho;Park, Hwa-Yong;Ma, Jin-Yeul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.26 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • Objectives: This study was conducted to investigate the acute toxicity of Pyungwi-san(Pingwei-san in Chinese) in ICR mice, according to KFDA and OECD guideline. Methods: In the present study, 15 male and female ICR mice administrated singly by gavage at dose levels of 0 and 2000 mg/kg of Pyungwi-san. During the experimental period, no treatment-related death was observed. There were no adverse effects on clinical signs, body weight, and gross findings at all treatment groups. Results: These results showed that the single oral adminstration of Pyungwi-san (Pingwei-san) did not cause any toxic effect at the dose levels of 2000 mg/kg in rats. Conclusions: Taken together, the median lethal dose($LD_{50}$) of Pyungwi-san (Pingwei-san) was considered to be over 2000 mg/kg body for both sexes.

Assessment of Biomarkers in Acetaminophen-Induced Hepatic Toxicity by siRNA

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • v.17 no.4
    • /
    • pp.438-445
    • /
    • 2009
  • We investigated global gene expression from both mouse liver and mouse hepatic cell lines treated with acetaminophen (APAP) in order to compare in vivo and in vitro profiles and to assess the feasibility of the two systems. During our analyses of gene expression profiles, we picked up several down-regulated genes, such as the cytochrome P450 family 51 (Cyp51), sulfotransferase family cytosolic 1C member 2 (Sult1c2), 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (Hmgcs1), and several genes that were up-regulated by APAP, such as growth arrest and DNA-damage-inducible 45 alpha (Gadd45a), transformation related protein 53 inducible nuclear protein 1 (Trp53inp1) and zinc finger protein 688 (Zfp688). For validation of gene function, synthesized short interfering RNAs (siRNAs) for these genes were transfected in a mouse hepatic cell line, BNL CL.2, for investigation of cell viability and mRNA expression level. We found that siRNA transfection of these genes induced down-regulation of respective mRNA expression and decreased cell viability. siRNA transfection for Cyp51 and others induced morphological alterations, such as membrane thickening and nuclear condensation. Taken together, siRNA transfection of these six genes decreased cell viability and induced alteration in cellular morphology, along with effective inhibition of respective mRNA, suggesting that these genes could be associated with APAP-induced toxicity. Furthermore, these genes may be used in the investigation of hepatotoxicity, for better understanding of its mechanism.

Antibacterial and Pharmacological Evaluation of Fluoroquinolones: A Chemoinformatics Approach

  • Sood, Damini;Kumar, Neeraj;Singh, Aarushi;Sakharkar, Meena Kishore;Tomar, Vartika;Chandra, Ramesh
    • Genomics & Informatics
    • /
    • v.16 no.3
    • /
    • pp.44-51
    • /
    • 2018
  • Fluoroquinolone (FQ) antibiotics are an important class of synthetic antibacterial agents. These are the most extensively used drugs for treating bacterial infections in the field of both human and veterinary medicine. Herein, the antibacterial and pharmacological properties of four fluoroquinolones: lomefloxacin, norfloxacin, ciprofloxacin, and ofloxacin have been studied. The objective of this study was to analyze the antibacterial characteristics of the different fluoroquinolones. Also, the pharmacological properties of the compounds including the Lipinski rule of five, absorption, distribution, metabolism, and excretion, LD50, drug likeliness, and toxicity were evaluated. We found that among all four FQ molecules, ofloxacin showed the highest antibacterial activity through in silico assays with a strong interaction (-38.52 kJ/mol) with the antibacterial target protein (topoisomerase-II DNA gyrase enzyme). The pharmacological and pharmacokinetic analysis also showed that the compounds ciprofloxacin, ofloxacin, lomefloxacin and norfloxacin have good pharmacological properties. Notably, ofloxacin was found to possess an IGC50 (concentration needed to inhibit 50% growth) value of $0.286{\mu}g/L$ against the Tetrahymena pyriformis protozoa. It also tested negative for the Ames toxicity test, showing its non-carcinogenic character.

Natural radioprotectors and their impact on cancer drug discovery

  • Kuruba, Vinutha;Gollapalli, Pavan
    • Radiation Oncology Journal
    • /
    • v.36 no.4
    • /
    • pp.265-275
    • /
    • 2018
  • Cancer is a complex multifaceted illness that affects different patients in discrete ways. For a number of cancers the use of chemotherapy has become standard practice. Chemotherapy is a use of cytostatic drugs to cure cancer. Cytostatic agents not only affect cancer cells but also affect the growth of normal cells; leading to side effects. Because of this, radiotherapy gained importance in treating cancer. Slaughtering of cancerous cells by radiotherapy depends on the radiosensitivity of the tumor cells. Efforts to improve the therapeutic ratio have resulted in the development of compounds that increase the radiosensitivity of tumor cells or protect the normal cells from the effects of radiation. Amifostine is the only chemical radioprotector approved by the US Food and Drug Administration (FDA), but due to its side effect and toxicity, use of this compound was also failed. Hence the use of herbal radioprotectors bearing pharmacological properties is concentrated due to their low toxicity and efficacy. Notably, in silico methods can expedite drug discovery process, to lessen the compounds with unfavorable pharmacological properties at an early stage of drug development. Hence a detailed perspective of these properties, in accordance with their prediction and measurement, are pivotal for a successful identification of radioprotectors by drug discovery process.

The Effect of Polyethylene Oxide on the Aggregation State and Toxicity of Amphotericin B (폴리에틸렌 옥사이드가 암포테리신-B의 응집 특성 및 독성에 미치는 영향)

  • Yu, Bong-G.
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.1
    • /
    • pp.7-12
    • /
    • 2001
  • Amphotericin B (AmB) is a drug of choice for the treatment of systemic fungal diseases, but its use is considerably limited due to a high incidence of toxicity, particularly nephrotoxicity. It has been demonstrated that the toxicity of AmB is caused by self-aggregated species of the drug and that unaggregated (monomeric) drug is nontoxic but still expresses antifungal activity. Poly (ethylene oxide) (PEO) is a water-soluble polymer, which may impact the aggregation state of AmB. We have studied the aggregation state of AmB as a function of PEO molecular weight and concentration. At 3,000 and 8,000 g/mole, there was minimal or no change of critical aggregation concentration (CAC) of AmB regardless of the concentration of polymer. By contrast at 20,000 g/mole, the CAC of AmB strikingly increased to 24.3 and $37.5\;{\mu}M$ at 5.0% and 10 % w/v of polymer, respectively. The critical overlap concentration (COC) of PEO 20,000 g/mole was 5.5%. It appears that an interaction between monomeric AmB and polymer coil increases above the COC, competing with self-aggregation of the drug. Accordingly, the degree of aggregation of AmB stayed low and the toxicity became less. There was no such effect at 3,000 and 8,000 g/mole of PEO, owing perhaps to small dimensions in comparison to AmB. Based upon these findings, less toxic AmB formulation may be developed by a pharmaceutical technique such as solid dispersion system containing both AmB and PEO 20,000 g/mole.

  • PDF