• Title/Summary/Keyword: Drug sensitivity

Search Result 463, Processing Time 0.029 seconds

EFFECTS OF ANTHOCYANOSIDE OLIGOMER ON MESOPIC CONTRAST SENSITIVITY IN MILD TO MODERATE MYOPIA

  • Seong Gong Je
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2001.12a
    • /
    • pp.52-60
    • /
    • 2001
  • Purpose: We performed a randomized, double-blind, placebo-controlled trial in mild to moderate myopia patients to evaluate the benefit of taking a nutrient supplement containing anthocyanoside oligomers for improving nocturnal visiual function and/or clinical symptoms. Methods: The subjects included have refractive error between -lD(Diopters) $\~$-8D in both eyes, symptoms of decreased night vision and asthenopia based on the scoring result of a pre-structured questionnaire, and abnormal results of mesopic contrast sensitivity(MCS) screening test showing abnormal curve of contrast sensitivity in the middle and high frequency level, between 6.0 and 30.0 CPD(Cycles per degree) at mesopic condition(-2$\~$0 log cd/$m^2$). Total 60 people who qualified the criteria above were enrolled and the subjects were instructed to take the investigational product (anthocyanoside or placebo) twice daily for a 4 week period. The enrolled subjects were investigated for nocturnal vision performance by MCS and clinical symptoms at their first visit and re-evaluated at post-intervention (4 weeks later). MCS was measured and improvement of contrast threshold level according to each CPD was calculated by subtracting initial values from final values. Age, refractive error, and MCS were compared between the placebo and anthocyanoside. Results: After 4 weeks of drug administration 22 of the anthocyanoside group showed symptom improvement compared to 1 of the placebo group (p=0.000). Contrast sensitivity levels according to each CPD before and after drug treatment showed significant improvement in the anthocyanoside group but not in the placebo group. Mean MCS change of anthocyanoside group is 2.41$\pm$1.91 which showed significant improvement compared to -0.40$\pm$2.47 of the placebo group(p=0.000). MCS changes of anthocyanoside group showed significant improvement compared to placebo group in all levels of CPD(p<0.05). During our investigation none of the subjects complained of specific side effects related to anthocyanoside use. Conclusion: Our results show that under careful selection of people with significant symptoms and definite MCS abnormalities, anthocyanoside oligomers may improve the subjective symptoms and objective MCS results.

  • PDF

Performance of the BD MAX MDR-TB assay in a clinical setting and its impact on the clinical course of patients with pulmonary tuberculosis: a retrospective before-after study

  • Sung Jun Ko;Kui Hyun Yoon;Sang Hee Lee
    • Journal of Yeungnam Medical Science
    • /
    • v.41 no.2
    • /
    • pp.113-119
    • /
    • 2024
  • Background: Missing isoniazid (INH) resistance during tuberculosis (TB) diagnosis can worsen the outcomes of INH-resistant TB. The BD MAX MDR-TB assay (BD MAX) facilitates the rapid detection of TB and INH and rifampin (RIF) resistance; however, data related to its performance in clinical setting remain limited. Moreover, its effect on treatment outcomes has not yet been studied. Methods: We compared the performance of BD MAX for the detection of INH/RIF resistances to that of the line probe assay (LPA) in patients with pulmonary TB (PTB), using the results of a phenotypic drug sensitivity test as a reference standard. The treatment outcomes of patients who used BD MAX were compared with those of patients who did not. Results: Of the 83 patients included in the study, the BD MAX was used for an initial PTB diagnosis in 39 patients. The sensitivity of BD MAX for detecting PTB was 79.5%. The sensitivity and specificity of BD MAX for INH resistance were both 100%, whereas these were 50.0% and 95.8%, respectively, for RIF resistance. The sensitivity and specificity of BD MAX were comparable to those of LPA. The BD MAX group had a shorter time interval from specimen request to the initiation of anti-TB drugs (2.0 days vs. 5.5 days, p=0.001). Conclusion: BD MAX showed comparable performance to conventional tests for detecting PTB and INH/RIF resistances. The implementation of BD MAX as a diagnostic tool for PTB resulted in a shorter turnaround time for the initiation of PTB treatment.

Validation of One-Step Real-Time RT-PCR Assay in Combination with Automated RNA Extraction for Rapid Detection and Quantitation of Hepatitis C Virus RNA for Routine Testing in Clinical Specimens

  • KIM BYOUNG-GUK;JEONG HYE-SUNG;BAEK SUN-YOUNG;SHIN JIN-HO;KIM JAE-OK;MIN KYUNG-IL;RYU SEUNG-REL;MIN BOK-SOON;KIM DO-KEUN;JEONG YONG-SEOK;PARK SUE-NIE
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.595-602
    • /
    • 2005
  • A one-step real-time quantitative RT-PCR assay in combination with automated RNA extraction was evaluated for routine testing of HCV RNA in the laboratory. Specific primers and probes were developed to detect 302 bp on 5'-UTR of HCV RNA. The assay was able to quantitate a dynamic linear range of $10^7-10^1$ HCV RNA copies/reaction ($R^2=0.997$). The synthetic HCV RNA standard of $1.84{\pm}0.1\;(mean{\pm}SD)$ copies developed in this study corresponded to 1 international unit (IU) of WHO International Standard for HCV RNA (96/790 I). The detection limit of the assay was 3 RNA copies/reaction (81 IU/ml) in plasma samples. The assay was comparable to the Amplicor HCV Monitor (Monitor) assay with correlation coefficient r=0.985, but was more sensitive than the Monitor assay. The assay could be completed within 3 h from RNA extraction to detection and data analysis for up to 32 samples. It allowed rapid RNA extraction, detection, and quantitation of HCV RNA in plasma samples. The method provided sufficient sensitivity and reproducibility and proved to be fast and labor-saving, so that it was suitable for high throughput HCV RNA test.

CDRgator: An Integrative Navigator of Cancer Drug Resistance Gene Signatures

  • Jang, Su-Kyeong;Yoon, Byung-Ha;Kang, Seung Min;Yoon, Yeo-Gha;Kim, Seon-Young;Kim, Wankyu
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.237-244
    • /
    • 2019
  • Understanding the mechanisms of cancer drug resistance is a critical challenge in cancer therapy. For many cancer drugs, various resistance mechanisms have been identified such as target alteration, alternative signaling pathways, epithelial-mesenchymal transition, and epigenetic modulation. Resistance may arise via multiple mechanisms even for a single drug, making it necessary to investigate multiple independent models for comprehensive understanding and therapeutic application. In particular, we hypothesize that different resistance processes result in distinct gene expression changes. Here, we present a web-based database, CDRgator (Cancer Drug Resistance navigator) for comparative analysis of gene expression signatures of cancer drug resistance. Resistance signatures were extracted from two different types of datasets. First, resistance signatures were extracted from transcriptomic profiles of cancer cells or patient samples and their resistance-induced counterparts for >30 cancer drugs. Second, drug resistance group signatures were also extracted from two large-scale drug sensitivity datasets representing ~1,000 cancer cell lines. All the datasets are available for download, and are conveniently accessible based on drug class and cancer type, along with analytic features such as clustering analysis, multidimensional scaling, and pathway analysis. CDRgator allows meta-analysis of independent resistance models for more comprehensive understanding of drug-resistance mechanisms that is difficult to accomplish with individual datasets alone (database URL: http://cdrgator.ewha.ac.kr).

Respiratory Review of 2014: Tuberculosis and Nontuberculous Mycobacterial Pulmonary Disease

  • Park, Cheol Kyu;Kwon, Yong Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.4
    • /
    • pp.161-166
    • /
    • 2014
  • Since tuberculosis (TB) remains a major global health concern and the incidence of multi-drug resistant (MDR)-TB is increasing globally, new modalities for the detection of TB and drug resistant TB are needed to improve TB control. The Xpert MTB/RIF test can be a valuable new tool for early detection of TB and rifampicin resistance, with a high sensitivity and specificity. Late-generation fluoroquinolones, levofloxacin, and moxifloxacin, which are the principal drugs for the treatment of MDR-TB, show equally high efficacy and safety. Systemic steroids may reduce the overall TB mortality attributable to all forms of TB across all organ systems, although inhaled corticosteroids can increase the risk of TB development. Although fixed dose combinations were expected to reduce the risk of drug resistance and increase drug compliance, a recent meta-analysis found that they might actually increase the risk of relapse and treatment failure. Regarding treatment duration, patients with cavitation and culture positivity at 2 months of TB treatment may require more than 6 months of standard treatment. New anti-TB drugs, such as linezolid, bedaquiline, and delamanid, could improve the outcomes in drug-resistant TB. Nontuberculous mycobacterial lung disease has typical clinical and immunological phenotypes. Mycobacterial genotyping may predict disease progression, and whole genome sequencing may reveal the transmission of Mycobacterium abscessus. In refractory Mycobacterium avium complex lung disease, a moxifloxacin-containing regimen was expected to improve the treatment outcome.

Prevalence and Characterization of Enterohemorrhagic Escherichia coli (EHEC) Isolated from Ground Beefs Distributed in Gyeong-In Region (경인지역에 유통되는 분쇄육 중 장출혈성대장균의 분포 조사 및 특성 연구)

  • Kim, Eun-Jeong;Park, Yong-Chjun;Cho, Joon-Il;Lee, Jong-Ok;Kim, Hee-Yun
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.773-778
    • /
    • 2006
  • The objective of this study was to evaluate three verocytotoxin-producing Escherichia coli (VTEC) detection kits to detect the presence of VT genes: Doupath Verocytotoxin (GLISA) developed by MERCK, ProsPect Shiga Toxin E. coil (STEC) Microplate Assay (ELISA) developed by Remel, and a polymerase chain reaction method. Our laboratory verified artificially inoculated samples. All three methods could detect very low numbers of VTEC, but VT-PCR had the best sensitivity for VTEC detection. From April through September 2005, 257 ground-beefs from supermakets and traditional markets were examined for the presence of VTEC by polymerase chain reaction immediately after purchase and total viable counts (TVC) were determined. VTEC was isolated from 30 of 257 ground-beefs. A variety of serogroups was found, including 10 stains belonging to the virulence type EHEC, but major serogroups such as O157, O26 and O111 were nor found.

Effect of MUC1 siRNA on Drug Resistance of Gastric Cancer Cells to Trastuzumab

  • Deng, Min;Jing, Da-Dao;Meng, Xiang-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.127-131
    • /
    • 2013
  • Trastuzumab is the first molecular targeting drug to increase the overall survival rate in advanced gastric cancer. However, it has also been found that a high intrinsic or primary trastuzumab resistance exists in some proportion of gastric cancer patients. In order to explore the mechanism of resistance to trastuzumab, firstly we investigated the expression of MUC1 (membrane-type mucin 1) in gastric cancer cells and its relationship with drug-resistance. Then using gene-silencing, we transfected a siRNA of MUC1 into drug-resistant cells. The results showed the MKN45 gastric cell line to be resistant to trastuzumab, mRNA and protein expression of MUC1 being significantly upregulated. After transfection of MUC1 siRNA, protein expression of MUC1 in MKN45cells was significantly reduced. Compared with the junk transfection and blank control groups, the sensitivity to trastuzumab under MUC1 siRNA conditions was significantly increased. These results imply that HER2-positive gastric cancer cell MKN45 is resistant to trastuzumab and this resistance can be cancelled by silencing expression of the MUC1 gene.

Determination of Simultaneous Analytical Method of Residual Pesticides by Gas Chromatography (기체크로마토그래피를 이용한 잔류농약 동시다성분 분석법)

  • Choi, Won-Jo;Choi, Gye-Sun;Lee, Hee-Jung;Won, Young-Jun;Park, Heung-Jai;Kim, Woo-Seong
    • Journal of Environmental Science International
    • /
    • v.18 no.12
    • /
    • pp.1369-1381
    • /
    • 2009
  • The simultaneous determination of residual pesticides was developed using a gas chromatography. In this study, a simple and reliable methodology was improved to detect 175 kinds of residual pesticides by a liquid-liquid extraction procedure, followed by chromatographic analysis by gas chromatography. The 175 kinds of residual pesticides was classified into 4 groups according to the chemical structure, column type, resolution and sensitivity. The soybean sample selected for recovery experiment was not detected any pesticides. The recovery rates were ranged from 70.6% to 119.7% in most pesticides. The relative standard deviation (RSD 0.3~5.6%) was lower than 5.6% in all cases. The limits of detection (LOD) was lower than the maximum residue levels established by Korean legislations. The method has been successfully applied to the analysis of approximately 130 real samples.

Platform Technologies for Research on the G Protein Coupled Receptor: Applications to Drug Discovery Research

  • Lee, Sung-Hou
    • Biomolecules & Therapeutics
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • G-protein coupled receptors (GPCRs) constitute an important class of drug targets and are involved in every aspect of human physiology including sleep regulation, blood pressure, mood, food intake, perception of pain, control of cancer growth, and immune response. Radiometric assays have been the classic method used during the search for potential therapeutics acting at various GPCRs for most GPCR-based drug discovery research programs. An increasing number of diverse small molecules, together with novel GPCR targets identified from genomics efforts, necessitates the use of high-throughput assays with a good sensitivity and specificity. Currently, a wide array of high-throughput tools for research on GPCRs is available and can be used to study receptor-ligand interaction, receptor driven functional response, receptor-receptor interaction,and receptor internalization. Many of the assay technologies are based on luminescence or fluorescence and can be easily applied in cell based models to reduce gaps between in vitro and in vivo studies for drug discovery processes. Especially, cell based models for GPCR can be efficiently employed to deconvolute the integrated information concerning the ligand-receptor-function axis obtained from label-free detection technology. This review covers various platform technologies used for the research of GPCRs, concentrating on the principal, non-radiometric homogeneous assay technologies. As current technology is rapidly advancing, the combination of probe chemistry, optical instruments, and GPCR biology will provide us with many new technologies to apply in the future.

Release of Calcein from Temperature-Sensitive Liposomes in a Poly(N-isopropylacrylamide) Hydrogel

  • Han Hee Dong;Kim Tae Woo;Shin Byung Cheol;Choi Ho Suk
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.54-61
    • /
    • 2005
  • We prepared temperature-sensitive liposomes (TS-liposomes) modified with a thermo sensitive polymer, such as poly(N-isopropylacrylamide) (PNIPAAm), to increase the degree of drug release from liposomes at the hyperthermic temperature. A PNIPAAm hydrogel containing TS-Iiposomes was also prepared to obtain a hydrogel complex at body temperature. In addition, a depot system for local drug delivery using the polymer hydrogel was developed to enhance therapeutic efficacy and prevent severe side effects in the whole body. The PNIPAAm-mod­ified TS-liposome was fixed into the PNIPAAm hydrogel having a high temperature-sensitivity. The release behavior of calcein, a model drug, from TS-liposomes in the PNIPAAm hydrogel was then initiated by external hyperthermia; the results indicated that sustained release as a function of temperature and time was caused by the thermosensitivity of the liposome surface and diffusion of the drug into the PNIPAAm hydrogel. Our results indicated that TS-liposomes in a PNIPAAm hydrogel represented a plausible system for local drug delivery.