• 제목/요약/키워드: Drug discovery

검색결과 534건 처리시간 0.03초

효과적 지식창출을 위한 조직능력 요건: 퀴놀론계 항생제 개발 사례를 중심으로 (Organizational Capabilities for Effective Knowledge Creation: An In-depth Case Analysis of Quinolone Antibacterial Drug Discovery Process)

  • 이춘근;김인수
    • 지식경영연구
    • /
    • 제2권1호
    • /
    • pp.109-132
    • /
    • 2001
  • The purpose of this article is to develop a dynamic model of organizational capabilities and knowledge creation, and at the same time identify the organizational capability factors for effective knowledge creation, by empirically analyzing the history of new Quinolone antibacterial drug compound (LB20304a) discovery process at LG, as a case in point. Major findings of this study are as follows. First, in a science-based area such as drug development, the core of successful knowledge creation lies in creative combination of different bodies of scientific explicit knowledge. Second, the greater the difficulty of learning external knowledge, the more tacit knowledge is needed for the recipient firm to effectively exploit that knowledge. Third, in science-based sector such as pharmaceutical industry, the key for successful knowledge creation lies in the capability of recruiting and retaining star scientists. Finally, for effective knowledge creation, a firm must keep its balance among three dimensions of organizational capabilities: local, process, architectural capabilities.

  • PDF

스테로이드 호르몬계 신약개발 (Discovery of New Steroid Hormonal Drugs)

  • Lee, Jae-Woon-
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 제2회 추계심포지움
    • /
    • pp.93-98
    • /
    • 1994
  • Most drug discovery has focused in recent years on the development of molecules that either interact with or block receptors, proteins that act as on-off switches for genetic activity, on the surfaces of human cells. Now, we have developed a technology that targets “receptors inside the cell” (intracellular receptors), opening a new and compelling avenue for drug discovery. Our receptor-based small molecule drugs can be catagorized in two ways: 1) receptor agonists, or molecules that activate a receptor; and 2) receptor antagonists, or drugs that inactivate a receptor.

  • PDF

Proteomics in Drug Discovery

  • Mathews, W. Rodney
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.73-73
    • /
    • 2002
  • The study of the protein complement of the genome, or proteome, represents an important new avenue for drug discovery. Proteomics research aims to quantify and characterize all of the expressed proteins in a biological system, and to determine the effect of various perturbations of the system on the expressed proteins. (omitted)

  • PDF

폴리에틸렌글리콜이 도입된 양이온성 리포솜의 물리적 특성 및 세포이입효과 (Physical properties and intracellular uptake of polyethyleneglycol-incorporated cationic liposomes)

  • 정순화;정석현;김성규;성하수;조선행;신병철
    • Journal of Pharmaceutical Investigation
    • /
    • 제38권1호
    • /
    • pp.15-21
    • /
    • 2008
  • Liposomes as one of the efficient drug carriers have some shortcomings such as their short circulation time, fast clearance from human body by reticuloendothelial system (RES) and limited intracellular uptake to target cell. In this study, polyethylenglycol (PEG)-incorporated cationic liposomes were prepared by ionic complexation of positively charged liposomes with carboxylated polyethyleneglycol (mPEG-COOH). The cationic liposomes had approximately $98.6{\pm}1.0nm$ of mean particle diameter and $42.8{\pm}0.8mV$ of zeta potential value. The PEG-incorporated cationic liposomes had $110.1{\pm}1.2nm$ of mean particle diameter with an increase of about 10 nm compared to the cationic liposomes. Zeta potential value of them was $12.9{\pm}0.6mV$ indicating 30mV decrease of cationic charge compared to the cationic liposomes. The amount of PEG which was incorporated onto the cationic liposomes was assayed by using picrate assay method and the incorporation efficiency was $58.4{\pm}1.1%$. Loading efficiency of model drug, doxorubicin, into cationic liposomes or PEG-incorporated cationic liposomes was about $96.0{\pm}0.7%$. Results of intracellular uptake which were evaluated by flow cytometry analysis of doxorubicin loaded liposomes showed that intracellular uptake of PEG-incorporated cationic liposomes was higher than the cationic liposomes or DSPE-mPEG liposomes. In addition, cytotoxicity of PEG-incorporated cationic liposomes was comparable to cationic liposomes. Consequently, the PEG-incorporated cationic liposomes of which surface was incorporated with PEG by ionic complex may be applicable as anticancer drug carriers that can increase therapeutic efficacy.

Shedding; towards a new paradigm of syndecan function in cancer

  • Choi, So-Joong;Lee, Ha-Won;Choi, Jung-Ran;Oh, Eok-Soo
    • BMB Reports
    • /
    • 제43권5호
    • /
    • pp.305-310
    • /
    • 2010
  • Syndecans, cell surface heparansulfate proteoglycans, have been proposed to act as cell surface receptors and/or coreceptors to play critical roles in multiple cellular functions. However, recent reports suggest that the function of syndecans can be further extended through shedding, a cleavage of extracellular domain. Shedding constitutes an additional level for controlling the function of syndecans, providing a means to attenuate and/or regulate amplitude and duration of syndecan signals by modulating the activity of syndecans as cell surface receptors. Whether these remaining cleavage products are still capable of functioning as cell surface receptors to efficiently transduce signals inside of cells is not clear. However, shedding transforms cell surface receptor syndecans into soluble forms, which, like growth factors, may act as novel ligands to induce cellular responses by association with other cell surface receptors. It is becoming interestingly evident that shed syndecans also contribute significantly to syndecan functions in cancer biology. This review presents current knowledge about syndecan shedding and its functional significance, particularly in the context of cancer.

Synthesis and Biological Evaluation of Tetrapeptide Ketones as Reversible 20S Proteasome Inhibitors

  • Latif, Muhammad;Jung, Myoung Eun;Lee, Kwangho;Choi, Gildon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3571-3575
    • /
    • 2014
  • Proteasome, a multicatalytic protease complex, has been validated as a promising therapeutic target in oncology. Carfilzomib (Kyprolis$^{(R)}$), a tetrapeptide epoxyketone, irreversibly inhibits the chymotrypsin-like (CT-L) activity of the proteasome and has been recently approved for multiple myeloma treatment by FDA. A chemistry effort was initiated to discover the compounds that are reversibly inhibit the proteasome by replacing the epoxyketone moiety of carfilzomib with a variety of ketones as reversible and covalent warheads at the C-terminus. The newly synthesized compounds exhibited significant inhibitory activity against CT-L activity of the human 20S proteasome. When the compounds were tested for cancer cell viability, 14-8 was found to be most potent in inhibiting Molt-4 acute lymphoblastic leukemia cell line with a $GI_{50}$ of $4.4{\mu}M$. Cytotoxic effects of 14-8 were further evaluated by cell cycle analysis and Western blotting, demonstrating activation of apoptotic pathways.