Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.5.305

Shedding; towards a new paradigm of syndecan function in cancer  

Choi, So-Joong (Department of Life Sciences, Division of Life and Pharmaceutical Sciences, Center for Cell Signaling and Drug Discovery Research, Ewha Womans University)
Lee, Ha-Won (Department of Life Sciences, Division of Life and Pharmaceutical Sciences, Center for Cell Signaling and Drug Discovery Research, Ewha Womans University)
Choi, Jung-Ran (Department of Life Sciences, Division of Life and Pharmaceutical Sciences, Center for Cell Signaling and Drug Discovery Research, Ewha Womans University)
Oh, Eok-Soo (Department of Life Sciences, Division of Life and Pharmaceutical Sciences, Center for Cell Signaling and Drug Discovery Research, Ewha Womans University)
Publication Information
BMB Reports / v.43, no.5, 2010 , pp. 305-310 More about this Journal
Abstract
Syndecans, cell surface heparansulfate proteoglycans, have been proposed to act as cell surface receptors and/or coreceptors to play critical roles in multiple cellular functions. However, recent reports suggest that the function of syndecans can be further extended through shedding, a cleavage of extracellular domain. Shedding constitutes an additional level for controlling the function of syndecans, providing a means to attenuate and/or regulate amplitude and duration of syndecan signals by modulating the activity of syndecans as cell surface receptors. Whether these remaining cleavage products are still capable of functioning as cell surface receptors to efficiently transduce signals inside of cells is not clear. However, shedding transforms cell surface receptor syndecans into soluble forms, which, like growth factors, may act as novel ligands to induce cellular responses by association with other cell surface receptors. It is becoming interestingly evident that shed syndecans also contribute significantly to syndecan functions in cancer biology. This review presents current knowledge about syndecan shedding and its functional significance, particularly in the context of cancer.
Keywords
Cancer; Matrix metalloproteinase (MMP); Shedding; Syndecan;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Hayashida, K., Parks, W. C. and Park, P. W. (2009) Syndecan-1 shedding facilitates the resolution of neutrophilic inflammation by removing sequestered CXC chemokines. Blood 114, 3033-3043.   DOI   ScienceOn
2 Maxhimer, J. B., Quiros, R. M., Stewart, R., Dowlatshahi, K., Gattuso, P., Fan, M., Prinz, R. A. and Xu, X. (2002) Heparanase-1 expression is associated with the metastatic potential of breast cancer. Surgery 132, 326-333.   DOI   ScienceOn
3 Purushothaman, A., Uyama, T., Kobayashi, F., Yamada, S., Sugahara, K., Rapraeger, A. C. and Sanderson, R. D. (2010) Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 115, 2449-2457.   DOI   ScienceOn
4 Su, G., Blaine, S. A., Qiao, D. and Friedl, A. (2008) Membrane type 1 matrix metalloproteinase-mediated stromal syndecan-1 shedding stimulates breast carcinoma cell proliferation. Cancer Res. 68, 9558-9565.   DOI   ScienceOn
5 Nikolova, V., Koo, C. Y., Ibrahim, S. A., Wang, Z., Spillmann, D., Dreier, R., Kelsch, R., Fischgräbe, J., Smollich, M., Rossi, L. H., Sibrowski, W., Wülfing, P., Kiesel, L., Yip, G. W. and Gotte, M. (2009) Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression. Carcinogenesis 30, 397-407.   DOI   ScienceOn
6 Yang, Y., Macleod, V., Miao, H. Q., Theus, A., Zhan, F., Shaughnessy, J. D., Jr, Sawyer, J., Li, J. P., Zcharia, E., Vlodavsky, I. and Sanderson, R. D. (2007) Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. J. Biol. Chem. 282, 13326-13333.   DOI   ScienceOn
7 Beauvais, D. M., Ell, B. J., McWhorter, A. R. and Rapraeger, A. C. (2009) Syndecan-1 regulates alphavbeta3 and alphavbeta5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J. Exp. Med. 206, 691-705.   DOI   ScienceOn
8 Sanderson, R. D., Yang, Y., Kelly, T., MacLeod, V., Dai, Y. and Theus, A. (2005) Enzymatic remodeling of heparan sulfate proteoglycans within the tumor microenvironment: growth regulation and the prospect of new cancer therapies. J. Cell Biochem. 96, 897-905.   DOI   ScienceOn
9 Subramanian, S. V., Fitzgerald, M. L. and Bernfield, M. (1997) Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J. Biol. Chem. 272, 14713-14720.   DOI   ScienceOn
10 Ding, K., Lopez-Burks, M., Sanchez-Duran, J. A., Korc, M. and Lander, A. D. (2005) Growth factor-induced shedding of syndecan-1 confers glypican-1 dependence on mitogenic responses of cancer cells. J. Cell Biol. 171, 729-738.   DOI   ScienceOn
11 Wang, F., Reierstad, S. and Fishman, D. A. (2006) Matrilysin over-expression in MCF-7 cells enhances cellular invasiveness and pro-gelatinase activation. Cancer Lett. 236, 292-301.   DOI   ScienceOn
12 Wang, J. B., Guan, J., Shen, J., Zhou, L., Zhang, Y. J., Si, Y. F., Yang, L., Jian, X. H. and Sheng, Y. (2009) Insulin increases shedding of syndecan-1 in the serum of patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 86, 83-88.   DOI   ScienceOn
13 Reizes, O., Goldberger, O., Smith, A. C., Xu, Z., Bernfield, M. and Bickel, P. E. (2006) Insulin promotes shedding of syndecan ectodomains from 3T3-L1 adipocytes: a proposed mechanism for stabilization of extracellular lipoprotein lipase. Biochemistry 45, 5703-5711.   DOI   ScienceOn
14 Kliment, C. R., Englert, J. M., Gochuico, B. R., Yu, G., Kaminski, N., Rosas, I. and Oury, T. D. (2009) Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis. J. Biol. Chem. 284, 3537-3545.   DOI   ScienceOn
15 Rodríguez-Manzaneque, J. C., Carpizo, D., Plaza-Calonge, Mdel. C., Torres-Collado, A. X., Thai, S. N., Simons, M., Horowitz, A. and Iruela-Arispe, M. L. (2009) Cleavage of syndecan-4 by ADAMTS1 provokes defects in adhesion. Int. J. Biochem. Cell. Biol. 41, 800-810.   DOI   ScienceOn
16 Holen, I., Drury, N. L., Hargreaves, P. G. and Croucher, P. I. (2001) Evidence of a role for a non-matrix-type metalloproteinase activity in the shedding of syndecan-1 from human myeloma cells. Br. J. Haematol. 114, 414-421   DOI   ScienceOn
17 Endo, K., Takino, T., Miyamori, H., Kinsen, H., Yoshizaki, T., Furukawa, M. and Sato, H. (2003) Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J. Biol. Chem. 278, 40764-40770.   DOI   ScienceOn
18 Asundi, V. K., Erdman, R., Stahl, R. C. and Carey, D. J. (2003) Matrix metalloproteinase-dependent shedding of syndecan-3, a transmembrane heparan sulfate proteoglycan, in Schwann cells. J. Neurosci. Res. 73, 593-602.   DOI   ScienceOn
19 Fitzgerald, M. L., Wang, Z., Park, P. W., Murphy, G. and Bernfield, M. (2000) Shedding of Syndecan-1 and -4 Ectodomains Is Regulated by Multiple Signaling Pathways and Mediated by a Timp-3-Sensitive Metalloproteinase. J. Cell Biol. 148, 811-824.   DOI
20 Pruessmeyer, J., Martin, C., Hess, F. M., Schwarz, N., Schmidt, S., Kogel, T., Hoettecke, N., Schmidt, B., Sechi, A., Uhlig, S. and Ludwig, A. (2010) A disintegrin and metalloproteinase 17 (ADAM17) mediates inflammation- induced shedding of syndecan-1 and -4 by lung epithelial cells. J. Biol. Chem. 285, 555-564.   DOI   ScienceOn
21 Spencer, J., Murphy, L. M., Conners, R., Sessions, R. B. and Gamblin, S. J. (2010) Crystal Structure of the LasA Virulence Factor from Pseudomonas aeruginosa: Substrate Specificity and Mechanism of M23 Metallopeptidases. J. Mol. Biol. 396, 908-923.   DOI   ScienceOn
22 Park, H., Kim, Y., Lim, Y., Han, I. and Oh, E. S. (2002) Syndecan-2 mediates adhesion and proliferation of colon carcinoma cells. J. Biol. Chem. 277, 29730-29736.   DOI   ScienceOn
23 Park, P. W., Pier, G. B., Preston, M. J., Goldberger, O., Fitzgerald, M. L. and Bernfield, M. (2000) Syndecan-1 shedding is enhanced by LasA, a secreted virulence factor of Pseudomonas aeruginosa. J. Biol. Chem. 275, 3057-3064.   DOI   ScienceOn
24 Oh, J. H., Kim, J. H., Ahn, H. J., Yoon, J. H., Yoo, S. C., Choi, D. S., Lee, I. S., Ryu, H. S. and Min, C. K. (2009) Syndecan-1 enhances the endometrial cancer invasion by modulating matrix metalloproteinase-9 expression through nuclear factor kappaB. Gynecol. Oncol. 114, 509-515.   DOI   ScienceOn
25 Conejo, J. R., Kleeff, J., Koliopanos, A., Matsuda, K., Zhu, Z. W., Goecke, H., Bicheng, N., Zimmermann, A., Korc, M., Friess, H., and Buchler, M. W. (2000) Syndecan-1 expression is up-regulated in pancreatic but not in other gastrointestinal cancers. Int. J. Cancer 88, 12-20.   DOI   ScienceOn
26 Popovic, A., Demirovic, A., Spajic, B., Stimac, G., Kruslin, B. and Tomas, D. (2010) Expression and prognostic role of syndecan-2 in prostate cancer. Prostate Cancer Prostatic. Dis. 13, 78-82.   DOI   ScienceOn
27 Woods, A. and Couchman, J. R. (2001) Syndecan-4 and focal adhesion function. Curr. Opin. Cell Biol. 13, 578-583.   DOI   ScienceOn
28 Brule, S., Charnaux, N., Sutton, A., Ledoux, D., Chaigneau, T., Saffar, L. and Gattegno, L. (2006) The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9. Glycobiology 16, 488-501.   DOI   ScienceOn
29 Morgan, M. R., Humphries, M. J. and Bass M. D. (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat. Rev. Mol. Cell Biol. 8, 957-969.   DOI   ScienceOn
30 Chen, P., Abacherli, L. E., Nadler, S. T., Wang, Y., Li, Q. and Parks, W. C. (2009) MMP7 shedding of syndecan-1 facilitates re-epithelialization by affecting alpha(2)beta(1) integrin activation. PLoS One 4, e6565.   DOI   ScienceOn
31 Khotskaya, Y. B., Dai, Y., Ritchie, J. P., MacLeod, V., Yang, Y., Zinn, K. and Sanderson, R. D. (2009) Syndecan- 1 Is Required for Robust Growth, Vascularization, and Metastasis of Myeloma Tumors in vivo. J. Biol. Chem. 284, 26085-26095.   DOI   ScienceOn
32 Maeda, T., Desouky, J. and Friedl, A. (2006) Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene 25, 1408-1412.   DOI   ScienceOn
33 Shimada, K., Nakamura, M., De Velasco, M. A., Tanaka, M., Ouji, Y., Miyake, M., Fujimoto, K., Hirao, K. and Konishi, N. (2010) Role of syndecan-1 (CD138) in cell survival of human urothelial carcinoma. Cancer Sci. 101, 155-160.   DOI   ScienceOn
34 Davies, E. J., Blackhall, F. H., Shanks, J. H., David, G., McGown, A. T., Swindell, R., Slade, R. J., Martin-Hirsch, P., Gallagher, J. T. and Jayson, G. C. (2004) Distribution and clinical significance of heparan sulfate proteoglycans in ovarian cancer. Clin. Cancer Res. 10, 5178-5186.   DOI   ScienceOn
35 Chen, D., Adenekan, B., Chen, L., Vaughan, E. D., Gerald, W., Feng, Z. and Knudsen, B. S. (2004) Syndecan-1 expression in locally invasive and metastatic prostate cancer. Urology 63, 402-407.   DOI   ScienceOn
36 Gordon, K. J., Dong, M., Chislock, E. M., Fields, T. A. and Blobe, G. C. (2008) Loss of type III transforming growth factor beta receptor expression increases motility and invasiveness associated with epithelial to mesenchymal transition during pancreatic cancer progression. Carcinogenesis 29, 252-262.   DOI   ScienceOn
37 Levy, P., Munier, A., Baron-Delage, S., Di Gioia, Y., Gespach, C., Capeau, J. and Cherqui, G. (1996) Syndecan-1 alterations during the tumorigenic progression of human colonic Caco-2 cells induced by human Ha-ras or polyoma middle T oncogenes. Br. J. Cancer 74, 423-431.   DOI   ScienceOn
38 Mannello, F., Tonti, G. A., Medda, V., Pederzoli, A. and Sauter, E. R. (2008) Increased shedding of soluble fragments of P-cadherin in nipple aspirate fluids from women with breast cancer. Cancer Sci. 99, 2160-2169.   DOI   ScienceOn
39 Finger, E. C., Turley, R. S., Dong, M., How, T., Fields, T. A. and Blobe, G. C. (2008) TbetaRIII suppresses non-small cell lung cancer invasiveness and tumorigenicity. Carcinogenesis 29, 528-535.   DOI   ScienceOn
40 Koenecke, C., Kumpers, P., Lukasz, A., Dammann, E., Verhagen, W., Gohring, G., Buchholz, S., Krauter, J., Eder, M., Schlegelberger, B. and Ganser, A. (2010) Shedding of the endothelial receptor tyrosine kinase Tie2 correlates with leukemic blast burden and outcome after allogeneic hematopoietic stem cell transplantation for AML. Ann. Hematol. 89, 459-467.   DOI
41 Bien, E. and Balcerska, A. (2008) Serum soluble interleukin 2 receptor alpha in human cancer of adults and children: a review. Biomarkers 13, 1-26.   DOI   ScienceOn
42 Fears, C. Y., Gladson, C. L. and Woods, A. (2006) Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J. Biol. Chem. 281, 14533-14536.   DOI   ScienceOn
43 Raucci, A., Cugusi, S., Antonelli, A., Barabino, S. M., Monti, L., Bierhaus, A., Reiss, K., Saftig, P. and Bianchi, M. E. (2008) A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J. 22, 3716-3727.   DOI   ScienceOn
44 Lambaerts, K., Wilcox-Adelman, S. A. and Zimmermann, P. (2009) The signaling mechanisms of syndecan heparan sulfate proteoglycans. Curr. Opin. Cell Biol. 21, 662-669.   DOI   ScienceOn
45 Fan, H. and Derynck, R. (1999) Ectodomain shedding of TGF-alpha and other transmembrane proteins is induced by receptor tyrosine kinase activation and MAP kinase signaling cascades. EMBO J. 18, 6962-6972.   DOI   ScienceOn
46 Najy, A. J., Day, K. C. and Day, M. L. (2008) The ectodomain shedding of E-cadherin by ADAM15 supports ErbB receptor activation. J. Biol. Chem. 283, 18393-18401.   DOI   ScienceOn
47 Zhang, L., Bukulin, M., Kojro, E., Roth, A., Metz, V. V., Fahrenholz, F., Nawroth, P. P., Bierhaus, A. and Postina, R. (2008) Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases. J. Biol. Chem. 283, 35507-35516.   DOI   ScienceOn
48 Zhang, L., Postina, R. and Wang, Y. (2009) Ectodomain shedding of the receptor for advanced glycation end products: a novel therapeutic target for Alzheimer's disease. Cell Mol. Life Sci. 66, 3923-3935.   DOI
49 Kojro, E. and Postina, R. (2009) Regulated proteolysis of RAGE and AbetaPP as possible link between type 2 diabetes mellitus and Alzheimer's disease. J. Alzheimers Dis. 16, 865-878.   DOI
50 Chandler, A. B., Earhart, A. D., Speich, H. E., Kueter, T. J., Hansen, J., White, M. M. and Jennings, L. K. (2010) Regulation of CD40L (CD154) and CD62P (p-selectin) Surface Expression upon GPIIb-IIIa Blockade of Platelets from Stable Coronary Artery Disease Patients. Thromb. Res. 125, 44-52.   DOI   ScienceOn
51 Gee, J. M. and Knowlden, J. M. (2003) ADAM metalloproteases and EGFR signalling. Breast Cancer Res. 5, 223-224.   DOI   ScienceOn
52 Lee, D. C., Sunnarborg, S. W., Hinkle, C. L., Myers, T. J., Stevenson, M. Y., Russell, W. E., Castner, B. J., Gerhart, M. J., Paxton, R. J., Black, R. A., Chang, A. and Jackson, L. F. (2003) TACE/ADAM17 processing of EGFR ligands indicates a role as a physiological convertase. Ann. N. Y. Acad. Sci. 995, 22-38.   DOI   ScienceOn
53 Kveiborg, M., Albrechtsen, R., Couchman, J. R. and Wewer, U. M. (2008) Cellular roles of ADAM12 in health and disease. Int. J. Biochem. Cell Biol. 40, 1685-1702.   DOI   ScienceOn
54 Hakozaki, A., Yoda, M., Tohmonda, T., Furukawa, M., Hikata, T., Uchikawa, S., Takaishi, H., Matsumoto, M., Chiba, K., Horiuchi, K. and Toyama, Y. (2010) Receptor Activator of NF-{kappa}B (RANK) Ligand Induces Ectodomain Shedding of RANK in Murine RAW264.7 Macrophages. J. Immunol. 184, 2442-2448.   DOI   ScienceOn