• Title/Summary/Keyword: Drug delivery systems

Search Result 248, Processing Time 0.025 seconds

Polymeric Micelle Using Poly((R)-3-hydroxybutyric acid)/Poly(ethylene glycol) Amphiphilic Block Copolymer for Drug Delivery System (Poly((R)-3-hydroxybutyric acid)/Poly(ethylene glycol) 양친성 블록 공중합체를 이용한 약물전달체용 고분자 미셀)

  • Jeong, Kwan-Ho;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.512-518
    • /
    • 2006
  • A biodegradable polymer poly((R) -3-hydroxybutyric acid) (PHB) was conjugated with a hydrophilic polymer poly(ethylene glycol) (PEG) by the ttansesterification reaction to form the amphiphilic block copolymer. PHB with low molecular weight ($3000{\sim}30000$) was appropriated for the drug delivery materials. High molecular weight PHB was hydrolyzed by an acid-catalyst to produce the low molecular weight one. Amphiphilic block copolymer was formed the self-assembled polymeric micelle system in the aqueous solution that the hydrophillic PEG was wraped the hydrophobic PHB. Generally, polymeric micelle forms the small particle between $10{\sim}200nm$. These polymeric micelle systems have been widely used for the drug delivery systems because they were biodegradable, biocompatible, non-toxic and patient compliant. The hydroxyl group of PEG was substituted with carboxyl group which has the reactivity to the ester group of PHB. Amphiphilic block copolymer was conjugated between PHB, and modified PEG at $176^{\circ}C$ which was higher than the melting point of PHB. Transesterification reaction was verified with DSC, FTIR, $^1H-NMR$. In the aqueous solution, critical micelle concentration (CMC) of the mPEG-co-PHB copolymer measured by the fluororescence scanning spectrometer was $5{\times}10^{-5}g/L$. The shape and size of the nanoparticle was taken by dynamic light scattering and atomic force microscopy. The size of the nanoparticle was about 130 nm and the shape was spherical. Our polymeric micelle system can be used as the passive targeting drug delivery system.

Preparation and Characterization of pH-Sensitive Poly(ethylene oxide) Grafted Methacrylic Acid and Acrylic Acid Hydrogels by ${\gamma}-ray $ Irradiation

  • Lim, Youn-Mook;Lee, Young-Moo;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.327-333
    • /
    • 2005
  • pH-sensitive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing it in the small intestine. In this study, hydrogels based on poly(ethylene oxide) (PEO) networks grafted with methacrylic acid (MAA) or acrylic acid (AAc) were prepared via a two-step process. PEO hydrogels were prepared by ${\gamma}-ray $ irradiation (radiation dose: 50 kGy, dose rate: 7.66 kGy/h), grafted by either MAA or AAc monomers onto the PEO hydrogels and finally underwent irradiation (radiation dose: 520 kGy, dose rate: 2.15 kGy/h). These grafted hydrogels showed a pH-sensitive swelling behavior. The grafted hydrogels were used as a carrier for the drug delivery systems for the controlled release of insulin. Drug-loaded hydrogels were placed in simulated gastric fluid (SGF, pH 1.2) for 2 hr and then in simulated intestinal fluid (SIF, pH 6.8). The in vitro drug release behaviors of these hydrogels were examined by quantification analysis with a UV-Vis spectrophotometer.

Functionalizing Liposomes with Dual Aptamers for Targeting of Breast Cancer Cells and Cancer Stem Cells

  • Park, Hee-Bin;You, Ji-Eun;Kim, Pyung-Hwan;Kim, Keun-Sik
    • Biomedical Science Letters
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Cancer stem cells, which are known to drive tumor formation and maintenance, are a major obstacle in the effective treatment of various types of cancer. Trans-membrane glycoprotein mucin 1 antigen and cell surface glycogen CD44 antigen are well-known surface markers of breast cancer cells and breast cancer stem cells, respectively. To effectively treat cancer cells and cancer stem cells, we developed a new drug-encapsulating liposome conjugated with dual-DNA aptamers specific to the surface markers of breast cancer cells and their cancer stem cells. These two aptamer (Apt)-targeted liposomes, which were prepared to encapsulate doxorubicin (Dox), were named "Dual-Apt-Dox". Dual-Apt-Dox is significantly more cytotoxic to both cancer stem cells and cancer cells compared to liposomes lacking the aptamers. Furthermore, we demonstrated the inhibitory efficacy of Dual-Apt-Dox against the experimental lung metastasis of breast cancer stem cells and cancer cells in athymic nude mice. We also showed the potent antitumor effects of dual-aptamer-conjugated liposome systems by targeting cancer cells as well as cancer stem cells. Thus, our data indicate that dual-aptamer-conjugated liposome systems can prove to be effective drug delivery vehicles for breast cancer therapy.

Effects of Hydrophilic Additives on the Release Rate of Protein Drugs (단백질 약물 방출속도에 미치는 친수성 첨가제의 영향)

  • Kwon, Young-Kwan;Kim, Ji-Hyeon;Yoo, Young-Je
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.213-217
    • /
    • 2007
  • It has been reported that hydrophobic additives generally decrease the release rate of protein drugs from drug delivery systems (DDS) and hydrophilic additives increase the release rate. In many cases, however, the addition of hydrophilic molecule is necessary for improving the stability of protein drugs. In the present work, the effects of hydrophilic additives on the release profiles, and micelle formation of protein drug formulations were investigated to develop a novel method for protein drug delivery. For model protein drug, bovine serum albumin (BSA) was employed and several hydrophilic additives were used in the release experiments. Hydrophilic additive D-sorbitol showed the lower release rates of BSA than other hydrophobic additives due to the gel strengthening ability of the additive and the optimum concentration of D-sorbitol was 3 w/v % for the retarded release rate. In addition, it was found that the addition of D-sorbitol was very effective for obtaining homogeneous and stable DDS. The results were discussed in terms of the micelle formation and the micelle structure, i.e., the differences in gel structure and the distribution of drugs in micelles.

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.

Effect of Specific Interaction of Multi-Ligands on the Specific Interaction between Particle and Cell (멀티 리간드의 특이적 상호작용이 입자-세포간 상호작용에 미치는 영향)

  • Yoon, Jung Hyun;Lee, Sei Young
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.94-101
    • /
    • 2022
  • Recent advancement of micro/nano technology enables the development of diverse micro/nano particle-based delivery systems. Due to the multi-functionality and engineerability, particle-based delivery system are expected to be a promising method for delivery to the target cell. Since the particle-based delivery system should be delivered to the various kinds of target cell, including the cardiovascular system, cancer cell etc., it is frequently decorated with multiple kinds of targeting molecule(s) to induce specific interaction to the target cell. The surface decorated molecules interact with the cell surface expressed molecule(s) to specifically form a firm adhesion. Thus, in this study, the probability of adhesion is estimated to predict the possibility to form a firm adhesion for the multi-ligand decorated particle-based delivery system.

Evaluation of Physico-chemical Properties of Acrylic Resin Hydrogel and their Application to Transdermal Delivery System

  • Chung, Uoo-Tae;Choi, Seung-Man;Kang, Kee-Long;Kim, Nak-Seo;Chung, Youn-Bok
    • Archives of Pharmacal Research
    • /
    • v.18 no.4
    • /
    • pp.224-230
    • /
    • 1995
  • Recently, many attempts have been made to use hydrogels of various polymers as delivery systems of various drugs and bioactive materials to prolong and control their phamacological activities. In this study, we have evaluated the physico-chemical properties of methacrylic acid-methyacrylic acid methyl ester copolymer 9Eudispert mv)m a acrylic resin hydorgel, and its application to transdermal delivery system. In the dissolution tests, the release rate of salicylic acid (SA) and sodium salicylate (SOd. SA) were faster than lidocain (LD) and lidocain-HCl(LD-HCl). As the concentration of Eudispert mv polymer increased, the extensibility of Eudispert mu hydrogel decreased, whereas the swelling ratio increased. The more NaOH and polymer concentration increased, the more osmotic pressure linearly increased. The skin permeation of Sod. SA, an acidic model drug, was remarkably enhanced by Eudispert mv hydrogel. All fatty acids, except for Sod. glycolate, dramatically increased the skin permeation flux in Eudispert mu hydrogel containing LD-Hcl, a basic model drug. Consequently, it is suggested that Eudispert mv hydrogel may be used as potential transdermal delivery vehicle.

  • PDF

Control of Drug Release from Polymeric Matrices Coated with Poly(DL-lactide) I. Effect of Coasting Substance on the Drug Release in pH 1.2 Hydrochloride Solution (Poly(DL-lactide)로 피막된 고분자 매트릭스로부터 약물 방출 조절 I. pH 1.2 염산 용액에서 피막물질이 약물방출에 미치는 영향)

  • 나재운;박영훈
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.297-302
    • /
    • 1999
  • The polymeric matrices coated with poly(DL-lactide) were prepared using chitosan derivatives such as chitosan, chitosan hydrochloride, and sulfonated chitosan for application of drug delivery systems. The drug release study using prednisolone as a model drug was performed in the hydrochloride solution at pH 1.2. The release rate of drug was decreased according to the increased content of matrices. The release rate of prednisolone according to the kinds of polymeric matrices coated were decreased in the order to chitosan, sulfonated chitosan, and chitosan hydrochloride. Drug release rate of polymeric matrices coated with poly(DL-lactide) was not only two times slower than noncoated one, but also the burst effect of initial period of drug release was decreased in comparison with noncoated one. From these results, it was expected that these formulations based on the chitosan derivative matrices coasted with poly(DL-lactide) were acceptable drug delivery devices for a sustained-release dosage form of drug.

  • PDF

Evaluation of Transferrin-Polyethylenimine Conjugate for Targeted Gene Delivery

  • Lee Kyung Man;Kim In Sook;Lee Yong Bok;Shin Sang Chul;Lee Kang Choon;Oh In Joon
    • Archives of Pharmacal Research
    • /
    • v.28 no.6
    • /
    • pp.722-729
    • /
    • 2005
  • With the aim to improve the specificity and to reduce the cytotoxicity of polyethylenimine (PEI), we have synthesized the conjugates of the branched PEI (25 kDa) with transferrin. The trans-ferrin-PEI (TP) conjugates with five compositions were synthesized using periodate oxidation method and confirmed by FT-IR spectroscopy and gel permeation chromatography. The free amine contents of TP conjugates, which were able to condense and deliver DNA, increased as the amount of PEI increased. TP/DNA polyplexes were characterized by measuring gel elec-trophoresis, ethidium bromide fluorescence quenching, particle size and zeta potential of complexes. Complete complexation of the polyplexes was observed above the N/P ratio of 5 in TP/DNA, and above 3 in PEI/DNA, respectively. The zeta potential of the complexes decreased as the amount of transferrin in TP conjugates increased. Transfection efficiency of TP conjugates was evaluated in HeLa cell and Jurkat cell systems. Among the five compositions of TP conjugates, TP-2 system mediated a higher $\beta$-galactosidase gene expression than PEI system in Jurkat cell which was known to express elevated numbers of transferrin receptors. From the results of the cell viability based on MTT assay, TP conjugates showed lower cytotoxicity com-pared with the PEI system. We expect that the TP conjugate can be used efficiently as a non-viral gene delivery vector.