• 제목/요약/키워드: Drug delivery systems

검색결과 248건 처리시간 0.03초

New Coating Method for Sustained Drug Release: Surface Modification of ePTFE Grafts by inner coating PLGA

  • Kim, Hyeseon;Park, Seohyeon;Kim, Dae Joong;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1333-1336
    • /
    • 2014
  • Expanded polytetrafluoroethylene (ePTFE) grafts have been used as vascular access for many patients suffering from end stage renal disease. However, the vascular graft can cause significant clinical problems such as stenosis or thrombosis. For this reason, many studies have been performed to make drug eluting graft, but initial burst is major problem in almost drug eluting systems. Therefore we used biodegradable polymer to reduce initial burst and make sustained drug delivery. The ePTFE grafts were dipped into a paclitaxel-dissolved solution and then PLGA-dissolved solution was passed through the lumen of ePTFE. We analyzed whether the dose of paclitaxel is enough and the loading amount of PLGA on ePTFE graft increases according to the coating solution's concentration. Scanning electron microscope (SEM) images of various concentration of PLGA showed that the porous surface of graft was more packed with PLGA by tetrahydrofuran solution dissolved PLGA. In addition, in vitro release profiles of Ptx-PLGA graft demonstrated that early burst was gradually decreased as increasing the concentration of PLGA. These results suggest that PLGA coating of Ptx loaded graft can retard drug release, it is useful tool to control drug release of medical devices.

Iron Oxide Nanoparticle-incorporated Alginate Capsules as Magnetic Field-assisted Potential Delivery Platforms for Agriculture Pesticides and Biocontrol Agents

  • Lee, Dohyeon;Choi, Kyoung Soon;Kim, Daun;Park, Sunho;Kim, Woochan;Jang, Kyoung-Je;Lim, Ki-Taek;Chung, Jong Hoon;Seonwoo, Hoon;Kim, Jangho
    • Journal of Biosystems Engineering
    • /
    • 제42권4호
    • /
    • pp.323-329
    • /
    • 2017
  • Purpose: Biocompatible capsules have recently been highlighted as a novel platform for delivering various components, such as drug, food, and agriculture pesticides, to overcome the current limitations of living systems, such as those in agriculture, biology, the environment, and foods. However, few active targeting systems using biocompatible capsules and physical forces simultaneously have been developed in the agricultural engineering field. Methods: Here, we developed an active targeting delivery platform that uses biocompatible alginate capsules and controls movements by magnetic forces for agricultural and biological engineering applications. We designed and fabricated large-scale biocompatible capsules, using custom-made nozzles ejecting alginate solutions for encapsulation. Results: To develop the active target delivery platforms, we incorporated iron oxide nanoparticles in the large-scale alginate capsules. The sizes of alginate capsules were controlled by regulating the working conditions, such as concentrations of alginate solutions and iron oxide nanoparticles. Conclusions: We confirmed that the iron oxide particle-incorporated large-scale alginate capsules moved actively in response to magnetic fields, which will be a good strategy for active targeted delivery platforms for agriculture and biological engineering applications, such as for the controlled delivery of agriculture pesticides and biocontrol agents.

다양한 소수성 물질이 개질된 키토산 나노입자의 약물전달체로서 응용성 고찰 (Application of Various Hydrophobic Moiety-modified Chitosan Nanoparticle as a Drug Delivery Carrier)

  • 정경원;나재운;박준규
    • 공업화학
    • /
    • 제28권4호
    • /
    • pp.404-409
    • /
    • 2017
  • 천연고분자 키토산은 생체적합하고 생분해성의 특성뿐만 아니라 항암, 항균, 콜레스테롤 저하 등의 다양한 생체활성을 갖고 있어 의료용 분야에서 많이 응용되고 있다. 현재 키토산을 약물전달시스템에 응용한 다양한 약물이 담지 된 키토산 나노입자를 개발하여 질병을 치료할 수 있는 연구가 활발히 진행 중에 있다. 키토산에 존재하는 free 아민($-NH_2$) 그룹은 다양한 소수성기를 물리적 화학적 개질을 통해 결합이 가능하며 소수성기가 도입된 키토산은 물에 분산시 자기회합에 의한 shell-core 나노입자를 형성하고 core 부분에 다양한 난용성 약물을 담지하여 물에 대한 용해도를 증가시킬 수 있으며, 단백질, 항암제, 백신 등의 다양한 약물을 담지하여 기존 약물의 부작용을 최소화하여 치료효과를 극대화할 수 있다. 또한, 키토산에 도입된 소수성기에 따라 입자의 크기 및 방출 속도를 제어할 수 있어 다양한 의료용 분야에 응용이 가능하다. 본 총설에서는 다양한 소수성기가 도입된 키토산 나노입자의 제조 및 특성과 특성에 따른 약물전달시스템의 응용성에 관하여 논의 하고자 한다.

펄스파워를 적용한 비침습 약물 전달기 개발 및 마우스 모델로의 적용 (Development and application of non-invasive drug delivery systems utilizing pulse power, and its application to mouse models)

  • 함휘찬;김규식;이지환;최형진;김도년;여재익
    • 전기전자학회논문지
    • /
    • 제28권1호
    • /
    • pp.97-103
    • /
    • 2024
  • 일부 약물은 피부의 표피층 이하로 주입될 때 훨씬 더 효과적인 의료 효과를 제공할 수 있다. 그러나 전통적인 비침습 주입 장치는 피부의 한 부분에 상대적으로 많은 양의 약물을 전달하며, 이는 조직층 구조를 분리하여 멍과 출혈을 유발할 수 있다. 피부의 큰 표면적에 빠른 반복율로 소량을 주입함으로써 환자의 부상과 통증을 감소시킬 수 있다. 이를 위해서 약액을 분사하는 압력은 빠른 속도로 침투 가능 압력까지 상승되고 빠르게 하강하여 주입되지 않는 되튀김량을 줄이고, 주입량을 최소화해야한다. 이러한 형태의 비침습 주사 장치가 개발되었지만 그 장치들의 의학적 효능은 분석된 바가 거의 없다. 따라서 이 연구에서는 속도가 ~310m/s인 마이크로젯을 분사하는 레이저 유도 마이크로젯 장치를 개발했다. 펄스 시간은 400~800 ㎲이며 각 분사가 초당 10번 반복되는 속도로 약물을 약 1 µL 분사할 수 있습니다. 이러한 원리를 사용하여 우리는 마우스 모델에 대한 약물 주사의 효과를 평가했다. 마우스 모델에 인슐린 용액을 주입한 후 혈중 인슐린 농도를 측정하였으며, 일반 바늘 주사 주법과 동일한 값을 얻었다.

Parenteral Formulations Based on Albumin Particulate Technology

  • Lee, Hong-Hwa;Lee, Min-Jung;Heo, Sun-Ju;Sah, Hong-Kee
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권spc호
    • /
    • pp.83-95
    • /
    • 2010
  • Over the years, nanoparticle drug delivery systems have demonstrated versatile potentials in biological, medical and pharmaceutical applications. In the pharmaceutical industry nanotechnology research has mainly focused on providing controlled drug release, targeting their delivery to specific organs, and developing parenteral formulations for poorly water soluble drugs to improve their bioavailability. Achievement in polymer industry has generated numerous polymers applicable to designing nanoparticles. From viewpoints of product development, a nanocarrier material should meet requirements for biodegradability, biocompatibility, availability, and regulatory approval crieteria. Albumin is indeed a material that fulfills such requirements. Also, the commercialization of a first albumin-bound paclitaxel nanoparticle product (Abraxane$^{TM}$) has sparked renewed interests in the application of albumin in the development of nanoparticle formulations. This paper reviews the intrinsic properties of albumin, its suitability as a nanocarrier material, and albumin-based parenteral formulation approaches. Particularly discussed in detail are albumin-based particulate injectables such as Abraxane$^{TM}$. Information on key roles of albumin in the nab$^{TM}$ technology and representative manufacturing processes of albumin particulate products are provided. It is likely that albumin-based particulate technology would extend its applications in delivering drugs, polypeptides, proteins, vaccines, nucleic acids, and genes.

Enhanced Antigen Delivery Systems Using Biodegradable PLGA Microspheres for Single Step Immunization

  • Cho, Seong-Wan;Kim, Young-Kwon
    • 대한의생명과학회지
    • /
    • 제12권4호
    • /
    • pp.443-450
    • /
    • 2006
  • To demonstrate their possibilities as an enhanced vaccine delivery system, protein-loaded Poly lactide glycolide copolymer (PLGA) microspheres were prepared with different physical characteristics. Ethyl acetate (EA) solvent extraction process was employed to prepare microspheres and the effects of process parameters on drug release properties were evaluated. The biodeuadability of microspheres was also evaluated by the pH change and GPC (Gel permeation chromatography). Primary IgG antibody responses in BALB/c mice were compared with protein saline solutions as negative controls and adsorbed alum suspensions as positive controls after single subcutaneous injection for in vivo studies. The microspheres showed a erosion with a highly porous structure and did not keep their spherical shape at 45 days and this result could be confirmed by GPC. In vitro release of proteinous drug showed initial burst effect in all batches of microspheres, followed by gradual release over the next 4 weeks. PLGA microspheres were degraded until 45 days and the secondary structure of OVA was not affected by the preparation method. Enzyme-linked immunosorbent assays demonstrated that the single subcutaneous administrations of OVA-loaded PLGA microspheres induced enhanced serum IgG antibody response in comparison to negative and positive controls. These results demonstrated that microspheres providing the controlled release of antigens might be useful in advanced vaccine formulations for the parenteral carrier system.

  • PDF

Formation of Poly(ethylene glycol)-Poly($\varepsilon$-caprolactone) Nanoparticles via Nanoprecipitation

  • Lee, Jae-Sung;Hwang, Su-Jong;Lee, Doo-Sung;Kim, Sung-Chul;Kim, Duk-Joon
    • Macromolecular Research
    • /
    • 제17권2호
    • /
    • pp.72-78
    • /
    • 2009
  • Size control of therapeutic carriers in drug delivery systems has become important due to its relevance to biodistribution in the human body and therapeutic efficacy. To understand the dependence of particle size on the formation condition during nanoprecipitation method, we prepared nanoparticles from biodegradable, amphiphilic block copolymers and investigated the particle size and structure of the resultant nanoparticles according to various process parameters. We synthesized monomethoxy poly(ethylene glycol)-poly($\varepsilon$-caprolactone) block copolymer, MPEG-PCL, with different MPEG/PCL ratios via ring opening polymerization initiated from the hydroxyl end group of MPEG. Using various formulations with systematic change of the block ratio of MPEG and PCL, solvent choice, and concentration of organic phase, MPEG-PCL nanoparticles were prepared through nanoprecipitation technique. The results indicated that (i) the nanoparticles have a dual structure with an MPEG shell and a PCL core, originating from self-assembly of MPEG-PCL copolymer in aqueous condition, and (ii) the size of nanoparticles is dependent upon two sequential processes: diffusion between the organic and aqueous phases and solidification of the polymer.

바이오 센서 및 랩온어칩

  • 박유근
    • 전자공학회지
    • /
    • 제31권1호
    • /
    • pp.58-72
    • /
    • 2004
  • Smart sensors and biochip technologies have received a great deal of attention in recent years not only because of the enormous potential markets in the healthcare expenditures but more importantly because of its great impact on the quality of human life in the future. Collaborative research among BT (Bio Technologies), IT (Information Technologies) and NT (Nano Technologies) will bring us a new paradigm of the healthcare services. Examples include disease prediction based on the genetic tests, personal medicines, point-of-care analysis, rapid and sensitive infectious disease diagnostics, environmental monitoring for chemical or biological warfares, intelligent drug delivery systems etc. In this report, recent accomplishment in the research area on biosensors, DNA chips, Protein Chips and Lab-on-a-chips are reviewed.

  • PDF

Production of Functional Colloids and Fibers from Phase Separation During Electrohydrodynamic Process

  • 정운룡
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.1.2-1.2
    • /
    • 2011
  • Electrohydrodynamics is a good approach to produce uniform-sized colloids and fibers in a continuous process. The dimension can be controlled from tens of nanometers to a few micrometers. The structure of the colloids and nanofibers from electrohydrodynamics has been diversified according to the uses. Especially, core-shell structure and hybridization with functional nanomaterials are fascinating due to their possible uses in drug-delivery systems, multifunctional scaffolds, organic/inorganic hybrids with new functions, and highly sensitive gas- or bio-sensors. This talk will present the structural variations in the colloids and fibers by simply employing phase separation during electrohydrodynamic process and demonstrate their possible applications.

  • PDF