• 제목/요약/키워드: Drug Distribution

검색결과 562건 처리시간 0.019초

내외과계 환자의 정신과 약물치료에서 약물-약물 상호작용 - 고려대학교 부속병원의 자문조정의 경험을 통하여 - (Drug-drug Interactions between Psychotropic Agents and Other Drugs in Physically Ill Patients - Experience of Consultation-liason in Korea University Hospital -)

  • 이민수;이헌정
    • 생물정신의학
    • /
    • 제6권1호
    • /
    • pp.49-66
    • /
    • 1999
  • Polypharmacotherapy, both psychotropic and nonpsychotropic, is widespread in various situations including psychiatric hospitals and general hospitals. As the clinical practice of using more than one drug at a time increase, the clinician is faced with ever-increasing number of potential drug interactions. Although many interactions have little clinical significances, some may interfere with treatment or even be life-threatening. The objective of this review is evaluation for drug-drug interactions often encountered in psychiatric consultation. Drug interactions can be grouped into two principal subdivisions : pharmacokinetic and pharmacodynamic. These subgroups serve to focus attention on possible sites of interaction as a drug moves from the site of administration and absorption to its site of action. Pharmacokinetic processes are those that include transport to and from the receptor site and consist of absorption, distribution on body tissue, plasma protein binding, metabolism, and excretion. Pharmacodynamic interactions occur at biologically active sites. In psychiatric consultation, these two subdivisions of drug interactions between psychotropic drugs and other drugs are likely to happen. We gathered informations of the drugs used in physically ill patients who are consulted to psychiatric department in Korea University Hospital. And we reviewed the related literatures about the drug-drug interactions between psychotropic drugs and other drugs.

  • PDF

Genetic Polymorphisms in Drug Transporters and Regulatory Xenobiotic Receptors in Korean Population

  • Lee, Sang-Seop;Shin, Jae-Gook
    • 한국환경성돌연변이발암원학회:학술대회논문집
    • /
    • 한국환경성돌연변이발암원학회 2004년도 춘계학술대회
    • /
    • pp.27-29
    • /
    • 2004
  • Drug transporters play an essential role in the absorption, distribution and elimination of clinical drugs, nutrients and toxicants. The importance of the transporters is exampled by therapeutic failure in cancer chemotherapy that is mainly caused by the overexpression of multidrug resistance (MDR)-related transporters. In addition, the transporters may involve in drug-drug interactions that lead to serious adverse drug responses and some transporters also contribute to inter-individual variation in drug responses. As an effort to understand the mechanism underlying the inter-individual variation of transporters activity, genetic and environmental factors influencing the expression or function of the transporters have extensively explored through last decade. Among them, genetic polymorphism of drug transporter encoding genes has generated much interest since the discovery of functional single nucleotide polymorphisms (SNP) of MDR1 gene. Besides drug transporters, xenobiotic receptors also modulate drug disposition by regulating the transcription of drug metabolizing enzymes and drug transporters. Among many xenobiotic receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are two most well characterized since these receptors show wide substrate specificities and regulate the expression of various enzymes involved in drug disposition. Recently, several functional genetic polymorphisms were reported in PXR coding gene. In the present study, genetic polymorphisms of two drug transporters, MDR1 and BCRP, and two xenobiotic receptors, PXR and CAR, were investigated in Korean population.

  • PDF

Genetic Polymorphisms in Drug Transporters and Regulatory Xenobiotic Receptors in Korean Population

  • Lee, Sang-Seop;Shin, Jae-Gook
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2004년도 춘계학술대회
    • /
    • pp.27-29
    • /
    • 2004
  • Drug transporters play an essential role in the absorption, distribution and elimination of clinical drugs, nutrients and toxicants. The importance of the transporters is exampled by therapeutic failure in cancer chemotherapy that is mainly caused by the overexpression of multidrug resistance (MDR)-related transporters. In addition, the transporters may involve in drug-drug interactions that lead to serious adverse drug responses and some transporters also contribute to inter-individual variation in drug responses. As an effort to understand the mechanism underlying the inter-individual variation of transporters activity, genetic and environmental factors influencing the expression or function of the transporters have extensively explored through last decade. Among them, genetic polymorphism of drug transporter encoding genes has generated much interest since the discovery of functional single nucleotide polymorphisms (SNP) of MDRl gene. Besides drug transporters, xenobiotic receptors also modulate drug disposition by regulating the transcription of drug metabolizing enzymes and drug transporters. Among many xenobiotic receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are two most well characterized since these receptors show wide substrate specificities and regulate the expression of various enzymes involved in drug disposition. Recently, several functional genetic polymorphisms were reported in PXR coding gene. In the present study, genetic polymorph isms of two drug transporters, MDR1 and BCRP, and two xenobiotic receptors, PXR and CAR, were investigated in Korean population.

  • PDF

페닐프로피온산계 해열진통제 고형지질나노입자의 입도분포와 약물봉입 및 용출특성 (Particle Size Distribution, Drug Loading Capacity and Release Profiles of Solid Lipid Nanoparticles of Phenylpropionic Acids)

  • 김윤선;김길수
    • Journal of Pharmaceutical Investigation
    • /
    • 제28권4호
    • /
    • pp.249-255
    • /
    • 1998
  • Solid Lipid Nanoparticle(SLN), one of the colloidal carrier systems, has many advantages such as good biocompatibility, low toxicity and stability. In this paper, the effects of drug lipophilicity and surfactant on the drug loading capacity, particle size and drug release profile were examined. SLNs were prepared by homogenization of melted lipid dispersed in an aqueous surfactant solution. Ketoprofen, ibuprofen and pranoprofen were used as model drugs and tweens and poloxamers were tested for the effect of surfactant. Mean particle size of prepared SLNs was ranged from 100 to 150nm. The drug loading capacity was improved with the most lipophilic drug and low concentration of surfactant. Particle size and polydispersity of SLNs were changed according to the used lipid and surfactant. The rates of drug release were controlled by the loading drug and surfactant concentration. SLN system with effective drug loading efficiency and proper particle size for the intravenous or oral formulation can be prepared by selecting optimum drug and surfactant.

  • PDF

딜티아젬과 페니토인과의 약물상호작용 (Drug Interaction Between Phenytoin and Diltiazem in Rabbit)

  • 최준식;장일효
    • Journal of Pharmaceutical Investigation
    • /
    • 제23권1호
    • /
    • pp.27-32
    • /
    • 1993
  • Pharmacokinetic drug interaction between phenytoin and diltiazem was investigated following i.v. administration concomitantly to rabbits. Diltiazem was coadministered at doses of 1, 2 and 3 mg/kg, respectively, with phenytoin (5 mg/kg) to rabbits. Plasma concentration and AUC of phenytoin were increased significantly, but volume of distribution and total body clearance were decreased significantly (p<0.05) at doses of 2 mg and 3 mg/kg of diltiazem. From the results of this experiment, it is desirable that dosage regimen of phenytoin should be adjusted and that therapeutic drug monitoring should be practiced for reduction of side or toxic effect when phenytoin should be administered with diltiazem in clinical practice.

  • PDF

Characteristics of ethylcellulose microcapsules of sulfisoxazole

  • Oh, Doo-Man;Lee, Min-Hwa
    • Archives of Pharmacal Research
    • /
    • 제5권2호
    • /
    • pp.61-70
    • /
    • 1982
  • Sulfisoxazole, a chemotherapeutic agent, was microencapsulated with ethylcellulose by means of phase separation form cyclohexane by temperatture change. The size distribution was determined by use of standard sieves and the effect of core to wall ratio was noted. To examine their shapes and usrface characteristics, the microcapsules were observed with a scanning electron microscope. Release of the drug from microcapsules into pH 7.5 buffer medium was studied. The release pattern was found to have similar properties to the release of a drug from an insoluble porous matrix reported. The apparent diffusion coefficient of sulfisoxazole was measured for the transport of the drug from the core of microcapsules into the surronding sink condition. The apparent diffusion coefficient increased with increasing capsule size.

  • PDF

Standardization and Quality Evaluation of Kampilla

  • Joseph, G.V.R.
    • Natural Product Sciences
    • /
    • 제6권3호
    • /
    • pp.151-153
    • /
    • 2000
  • Kampilla is an important herbal drug of indigenous system of medicine. Fruit dust of Mallotus philippensis Muell-Arg constitutes the genuine drug Kampilla. However, due to limited distribution of this plant and its high medicinal value, the drug is heavily adulterated with the cheaper substances. Hence the present study was undertaken to evaluate both the authentic and market samples. The drug consists of resin glands and trichomes. Resin glands are lined by a delicate yellowish thin membrane and bear a pore at the tip. Quantitative standards of the drug powder showed 82.50% yield in total ash while alcohol soluble extract of market and authentic sample exhibit 0.97% and 3.458% respectively. The main adulterant noticed in the market sample is brick powder. Simple methods are suggested to identify the genuine drug.

  • PDF

Role of Catheter's Position for Final Results in Intrathecal Drug Delivery. Analysis Based on CSF Dynamics and Specific Drugs Profiles

  • De Andres, Jose;Perotti, Luciano;Villanueva, Vicente;Asensio Samper, Juan Marcos;Fabregat-Cid, Gustavo
    • The Korean Journal of Pain
    • /
    • 제26권4호
    • /
    • pp.336-346
    • /
    • 2013
  • Intrathecal drug delivery is an effective and safe option for the treatment of chronic pathology refractory to conventional pain therapies. Typical intrathecal administered drugs are opioids, baclofen, local anesthetics and adjuvant medications. Although knowledge about mechanisms of action of intrathecal drugs are every day more clear many doubt remain respect the correct location of intrathecal catheter in order to achieve the best therapeutic result. We analyze the factors that can affect drug distribution within the cerebrospinal fluid. Three categories of variables were identified: drug features, cerebrospinal fluid (CSF) dynamics and patients features. First category includes physicochemical properties and pharmacological features of intrathecal administered drugs with special attention to drug lipophilicity. In the second category, the variables in CSF flow, are considered that can modify the drug distribution within the CSF with special attention to the new theories of liquoral circulation. Last category try to explain inter-individual difference in baclofen response with difference that are specific for each patients such as the anatomical area to treat, patient posture or reaction to inflammatory stimulus. We conclude that a comprehensive evaluation of the patients, including imaging techniques to study the anatomy and physiology of intrathecal environment and CSF dynamics, could become essential in the future to the purpose of optimize the clinical outcome of intrathecal therapy.

Systematic Approach for Analyzing Drug Combination by Using Target-Enzyme Distance

  • Park, Jaesub;Lee, Sunjae;Kim, Kiseong;Lee, Doheon
    • Interdisciplinary Bio Central
    • /
    • 제5권2호
    • /
    • pp.3.1-3.7
    • /
    • 2013
  • Recently, the productivity of drug discovery has gradually decreased as the limitations of single-target-based drugs for various and complex diseases become exposed. To overcome these limitations, drug combinations have been proposed, and great efforts have been made to predict efficacious drug combinations by statistical methods using drug databases. However, previous methods which did not take into account biological networks are insufficient for elaborate predictions. Also, increased evidences to support the fact that drug effects are closely related to metabolic enzymes suggested the possibility for a new approach to the study drug combinations. Therefore, in this paper we suggest a novel approach for analyzing drug combinations using a metabolic network in a systematic manner. The influence of a drug on the metabolic network is described using the distance between the drug target and an enzyme. Target-enzyme distances are converted into influence scores, and from these scores we calculated the correlations between drugs. The result shows that the influence score derived from the targetenzyme distance reflects the mechanism of drug action onto the metabolic network properly. In an analysis of the correlation score distribution, efficacious drug combinations tended to have low correlation scores, and this tendency corresponded to the known properties of the drug combinations. These facts suggest that our approach is useful for prediction drug combinations with an advanced understanding of drug mechanisms.

In Vitro Uptake of Salicylate by Human Red Blood Cells

  • Kim, Chone-Kook
    • Archives of Pharmacal Research
    • /
    • 제2권1호
    • /
    • pp.65-70
    • /
    • 1979
  • Distribution and binding properties of sodium salicylate the human red blood cells were studied under various experimental conditions. The effect of tonicity and hemolysis on the steady state level of the drug within the human red blood cells were accounted for in this study. When the washed cells were suspended in normal saline solution, the drug was so rapidly permeated into red cells. Since the pH of the system forces nearly complete ionization of the drug, ionic diffusion through aqueous pores is thought to be the mode of salicylate transport. Human red cell binding capacity and association constant for salicylate were estimated. This work supports the view that the red cells act asan important reservior of salicylate.

  • PDF