• 제목/요약/키워드: Drought-resistant

검색결과 51건 처리시간 0.023초

북한의 지역별 기상학적 가뭄의 평가와 유형분류 (Assessment and Classification of Meteorological Drought Severity in North Korea)

  • 유승환;남원호;장민원;최진용
    • 한국농공학회논문집
    • /
    • 제50권4호
    • /
    • pp.3-15
    • /
    • 2008
  • North Korea is one of the most vulnerable countries of the world for drought but still it is difficult to find scientific researches for understanding of the drought characteristics. This study analyzed the temporal and spatial distribution of meterological drought severity and classified the drought development types in North Korea. All eleven drought indices were tested such as seasonal rainfall, PDS, SPI and so on, and then drew the drought risk map by each indicator using frequency analysis and GIS(Geographic Information Systems) for twenty one meteorological stations. In addition meteorological drought characteristics in North Korea was classified to six patterns on Si/Gun administrative units using cluster analysis on the drought indicators. The cluster III has the strongly drought-resistant area due to sufficient rainfall and the cluster V was considered as the most drought-vulnerable area, Pungsan and Sinpo, because of the severest drought condition for eight drought indicators. The results of this study are expected to be provided for the basic understanding of regionalized drought severity and characteristics confronting the risk of drought from climate variations in North Korea.

북한의 가뭄 특성 변화가 농업에 미치는 영향 평가 (Evaluation of the Impact of Changes in Drought Characteristics on Agriculture in the DPRK)

  • 송성호;김혁
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권5호
    • /
    • pp.18-31
    • /
    • 2022
  • To evaluate the impact of drought on agriculture in N. Korea, SPI (standardized precipitation index) analysis was carried out by utilizing time-series precipitation data during 1996 - 2003 when severe drought occurred throughout the country. The SPI value was estimated to reach 12 in approximately 60% of the total period, indicating that agricultural productivity deteriorated rapidly due to the long-term drought. The national average drought cycle, based on SPI 12, was estimated as 32.5 months for the last 40 years. However, when examined on 20-year basis, the drought cycle was shortened by 10.6 months in last 20 years (30.3 months) as compared to previous 20 years (40.9 months). Annual crop production continued to increase mainly in rice and maize until the mid-1990s, but declined sharply thereafter due to the drought. After the drought period, the production of potatoes of which growth is more resistant to drought started to increase to the production level comparable to those of rice and soybean. It is expected that changes in the agricultural production environment in N. Korea will be inevitable due to the climate change. To this end, using the results of the drought cycle analysis, it is possible to analyze the changes in the agricultural production environment in N. Korea in the future.

Growth and Physiological Responses of Quercus acutissima Seedling under Drought Stress

  • Lim, Hyemin;Kang, Jun Won;Lee, Solji;Lee, Hyunseok;Lee, Wi Young
    • Plant Breeding and Biotechnology
    • /
    • 제5권4호
    • /
    • pp.363-370
    • /
    • 2017
  • In this study, Quercus acutissima seedlings were subjected to drought for 30 days then analyzed to determine their response to water deficit. The growth phenotype, chlorophyll fluorescence response, fresh weight, dry weight, photosynthetic pigment levels, soluble sugar content, and malondialdehyde (MDA) were measured to evaluate the effects of drought on plant growth and physiology. The growth phenotype was observed by infrared (IR) digital thermal imaging after 30 days of drought treatment. The maximum, average, and minimum temperatures of drought-treated plant leaves were $1-2^{\circ}C$ higher than those of the control. In contrast, the fresh and dry weights of the dehydrated leaves were generally lower than those of the control. There were no significant differences between treatments in terms of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid levels. Nevertheless, for the drought treatment, the $F_v/F_m$ and $F_v/F_o$ ratios (chlorophyll fluorescence response) were lower than those for the control. Therefore, photosynthetic activity was lower in the dehydrated plants than the control. The drought-stressed Q. acutissima S0536 had lower soluble sugar (glucose and fructose) and higher MDA levels than the controls. These findings may explain the early growth and physiological responses of Q. acutissima to dehydration and facilitate the selection of drought-resistant tree families.

자생식물로부터 내건성 식물의 최적인자 선발과 생육특성 (Selection Indices to Identify Drought-tolerance and Growth Characteristics of the Selected Korean Native Plants)

  • 임현정;송현진;정미진;서영롱;김학곤;박동진;양우형;김용덕;최명석
    • 농업생명과학연구
    • /
    • 제50권2호
    • /
    • pp.73-82
    • /
    • 2016
  • 본 연구에서는 내건성 식물 선발을 위한 최적 인자를 구명하고, 이들 내건성 식물들의 생장특성을 조사하였다. 건조저항인자에 대한 나머지 건조저항일(RD), 엽면적(LD), 단위증산량(UTR), 상대함수량(RWC), 상대수분손실량(RWL), 엽면적(LA), 기공수(SN) 및 기공면적(SA) 등 6개 인자들을 비교한 결과 상대수분손실량과 단위증산량이 건조저항일에 많은 영향을 주는 것으로 나타났다. PCA분석 결과 SA, LA, RD는 한그룹으로 RWC와 SN은 다른 한 그룹으로 구분되었고, UTR은 SA, LA와, RWL은 RWC와 SN과 음의 상관을 보였다. 상기 결과를 종합하여 느릅나무, 도깨비바늘, 뚝갈, 매듭풀, 새, 더위지기, 맑은대쑥, 독말풀, 긴담배풀, 소리쟁이, 비수리, 장구채, 개기장, 도깨비가지를 내건성 식물 종으로 선발하였고, 이들에 대한 생장시험을 수행하였다. 절토사면지에서 내건성 식물의 줄기생장은 식물 종간에 약간의 차이를 보였는데, 줄기생장과 잎의 수는 느릅나무를 제외하고 폿트에서는 차이를 보이지 않았다. 그러나 절토사면지에서 내건성 식물 뿌리 생장과 T/R율은 폿트생장과 큰 차이를 보였고, 특히 T/R율은 폿트묘보다 월등히 낮았다. 이 결과로 보아 선발된 내건성 식물은 절토사면지와 같이 척박한 토양에서도 잘 적응할 것으로 나타나 내건성 식물의 육종 등에 이용될 수 있을 것으로 판단된다.

가뭄저항성 GM벼(CaMsrB2-8)의 농업적 특성의 퇴화 가능성 검정 (Deterioration of Agronomic Characteristics of Drought-Resistant GM Rice (CaMsrB2-8))

  • 김보라;손진환;김혜련;함정관;;박순기;신동현
    • Weed & Turfgrass Science
    • /
    • 제2권2호
    • /
    • pp.159-163
    • /
    • 2013
  • 본 논문은 가뭄저항성 유전자를 도입한 GM벼(CaMsrB2-8)를 모품종 일미와 비교하여 잡초화 가능성의 여부를 판단하고자 실시하였다. GM벼(CaMsrB2-8)의 생육특성과 발아율 실험 결과 모품종 일미와 큰 차이를 보이지 않았고, 모든 종자는 6일 후 발아하였다. GM벼(CaMsrB2-8)와 일미의 수발아성 실험을 $23{\pm}2^{\circ}C$ 온실에서 충분한 물을 분무하여 40일간 진행한 결과 수발아는 발생하지 않았다. 라튜닝 후 GM벼(CaMsrB2-8)와 일미의 지상부 생장을 비교한 결과 7-14일 동안 일미보다 GM벼(CaMsrB2-8)의 성장이 빠른 것처럼 보였으나 그 이후 14-21일 동안에는 두 개체가 비슷한 성장세를 보였다. GM벼(CaMsrB2-8)와 일미의 탈립율은 두 개체가 비슷하였으며 등숙율 또한 90%이상으로 비슷한 수준을 보였다. 종자의 월동성을 조사한 결과 발아율 0%로 자연상태에서 월동 후 발아 가능성은 없을 것으로 보인다. 따라서 본 연구를 토대로 GM벼(CaMsrB2-8)에 도입된 내건성유전자는 벼의 농업적 특성을 변화시키지 않는 것으로 판단되며 따라서 GM벼(CaMsrB2-8) 재배 시 잡초화 되지는 않을 것으로 생각된다.

Transcriptomic profiling of the maize (Zea mays L.) to drought stress at the seedling stage

  • Moon, Jun-Cheol;Kim, Hyo Chul;Lee, Byung-Moo
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.111-111
    • /
    • 2017
  • The development and productivity of maize (Zea mays L.) is frequently impacted by water scarcity, and consequently to increased drought tolerance in a priority target in maize breeding programs. To elucidate the molecular mechanisms of resistance to drought stress in maize, RNA-seq of the public database was used for transcriptome profiling of the seedling stage exposed to drought stress of three levels, such as moderate, severe drought stress and re-watering. In silico analysis of differentially expressed genes (DEGs), 176 up-regulated and 166 down-regulated DEGs was detected at moderated stress in tolerance type. These DEGs was increasing degradation of amino acid metabolism in biological pathways. Six modules based on a total of 4,771 DEGs responses to drought stress by the analysis of co-expression network between tolerance and susceptible type was constructed and showed to similar module types. These modules were discriminated yellow, greenyellow, turquoise, royalblue, brown4 and plum1 with 318, 2433, 375, 183, 1405 and 56 DEGs, respectively. This study was selected 30 DEGs to predicted drought stress response gene and was evaluated expression levels using drought stress treated sample and re-watering sample by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). 23 genes was shown increasing with drought stress and decreasing with re-watering. This study contribute to a better understanding of the molecular mechanisms of maize seedling stage responses to drought stress and could be useful for developing maize cultivar resistant to drought stress.

  • PDF

한발저항성 정도가 다른 보리 품종들의 한발처리에 따른 생리적 특성변화 (Changes in Physiological Characteristics of Barley Genotypes under Drought Stress)

  • 이변우;부금동;백남천;김정곤
    • 한국작물학회지
    • /
    • 제48권6호
    • /
    • pp.506-515
    • /
    • 2003
  • 이 논문은 한발저항성이 다른 6개 보리 품종의 한발에 따른 생장, 잎의 수분포텐셜(leaf water potential, LWP), 상대함수량(leaf relative water content, RWC), 삼투압(leaf osmotic potential, OP), 삼투조정(osmotic adjustment, OA), 팽압(leaf turgor pressure, LTP), 순광합섬, 기공전도도, 엽육전도도, 엽록소형광 등의 변화를 조사하여 비교한 결과를 요약하면 다음과 같다. 1 한발 처리시 토양수분포텐셜은 -0.05㎫이었고. 종료시에는 -0.29㎫로 저하하였다. Dicktoo-S 동보리 1호, Dicktoo-L, Dicktoo-T, 수원쌀보리 365호, 탑골보리 품종의 한발처리구 건물중은 각각 대조구(처리기간종 -0.05㎫ 유지)에 비하여 68%, 69%, 70%, 86%, 55%, 37%를 나타내어 Dicktoo 계통과 동보리1호의 한발저항성이 강하였고, 수원쌀보리 365호와 탑골보리는 한발저항성이 약하였다. 2. 한발저항성이 강한 품종은 삼투조정능력이 커서 한발처리에 따른 RWC와 LWP의 저하가 작았고 팽압유지능력이 컸다. 3. 한발처리에 따라 순광합성이 저하하였고 그 저하정도는 한발저항성이 큰 품종이 작았는데, 이는 한발저항성이 큰 품종이 기공전도도, 엽육전도도 및 PSII 최대양자수율(Fv/Fm)의 저하가 적었기 때문이었다. 4. 결론적으로 저항성이 큰 품종은 삼투조정에 의한 수분유지능력이 크고 이에 따라 광합성저하가 적어 상대적으로 생장의 감소가 적은 것으로 판단되었다.

Comparison of NERICA and Asian rice among traits relevant to drought resistance in the field and the effects of compost

  • Fujii, Michihiko
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.335-335
    • /
    • 2017
  • Recently NERICA (New Rice for Africa) was developed by a crossing of African rice (Oryza glaberrima Steud.) and Asian rice (Oryza sativa L.) in West Africa, and is considered to be drought resistant, but drought resistance of NERICA and differences between Asian rice are not clarified enough. In this research, NERICA (four cultivars and two lines), Asian rice (three cultivars and sativa parent of NERICA) and African rice (glaberrima parent of NERICA) were cultivated in the field in Shizuoka University under drought and traits of each cultivar and line relevant to drought resistance, stomatal conductance by porometer, soil water content of individual depths by TDR method, SPAD values by SPAD meter and leaf thickness by micrometer, were measured and compared with dry matter production and yield. Effects of compost were also compared among sativa parent, one NERICA cultivar and two NERICA lines. Glaberrima parent showed highest top dry weight. One NERICA line, one drought resistant Asian rice cultivar and sativa parent, showed higher top dry weight and yield (ear weight) than other Asian rice cultivars and NERICA cultivars and line tested. Compost tended to increase top dry weight and yield in one of NERICA line and sativa parent. But in one NERICA cultivar and line, top dry weight and yield were not increased. In one of Asian rice, one of NERICA line and sativa parent that showed high top dry weight and yield, stomatal conductance was high. On the contrary the glaberrima parent and in other NERICA cultivars and line it was low. In sativa parent compost increased stomatal conductance but in NERICA cultivar and lines it was not. Among cultivars and lines that showed high top dry weight and yield sativa parent and one of NERICA line SPAD value and leaf thickness were high but in one of Asian rice and glaberrima parent they were low. Cultivar and line differences in yield and top dry weight among Asian rice and NERICA were significantly correlated with those in stomatal conductance ($r=0.778^{**}$ and $r=0.654^*$, respectively) and those in leaf thickness ($r=0.600^*$ and $r=0.640^*$, respectively). In Asian rice cultivars average soil water content was significantly correlated with yield ($r=0.886^*$) but in NERICA cultivars and lines it was not significant correlated (r= -0.256). Cultivar and line differences in leaf thickness were significantly correlated with SPAD value ($r=0.773^{**}$). In Asian rice cultivars it was significantly correlated ($r=0.962^{**}$), but in NERICA cultivars and lines it was not significantly correlated (r=0.559). Asian rice cultivars tended to consume soil water to increase yield but in NERICA cultivars and lines the tendency was not clear. Correlation between SPAD value and leaf thickness was different between Asian rice and NERICA cultivars and lines, and in Asian rice cultivars it was significantly correlated but in NERICA cultivars and lines it was not significant. Importance of maintaining high stomatal conductance by high leaf thickness was clarified.

  • PDF

A Possible Role of Trehalose as a Regulatory Molecule in Plant Drought Resistance

  • Hwang, Eul-Won;Cho, Soo-Muk;Kwon, Hawk-Bin
    • 한국환경농학회지
    • /
    • 제23권3호
    • /
    • pp.123-127
    • /
    • 2004
  • In many organisms, trehalose has been Down as an energy source and a protectant against various environmental stresses such as desiccation, freezing, heat and osmotic pressure. Previously, we have isolated and characterized the genes encoding trehalose-6-phosphate synthase (ZrTPS1) and trehalose-6-phosphate phosphatase (ZrTPS2) from one of the most osmotolerant yeasts, Zygosaccharomyces rouxii. We have also generated transgenic plants by co-introduction of ZrTPS2 and ZrTPS2 into potato plant (ZrTPS2-2A-ZrTPS1 plant) in an attempt to metabolically engineer trehalose in the transgenic plant using the foot-and-mouth disease virus(FMDV) 2A system and to generate drought resistant crop plants. In this research, we assayed previously generated the ZrTPS2-2A-ZrTPS1 plant biofunctionally by drought treatment, and measured the amount of trehalose in the ZrTPS2-2A-ZrTPS1 transgenic plants. The ZrTPS2-2A-ZrTPS1 transgenic plant showed strong drought resistance in spite of little or no accumulation of transgenic in he transgenic plant compared with control plant.

Physiology and Gene Expression Analysis of Tomato (Solanum lycopersicum L.) Exposed to Combined-Virus and Drought Stresses

  • Samra Mirzayeva;Irada Huseynova;Canan Yuksel Ozmen;Ali Ergul
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.466-485
    • /
    • 2023
  • Crop productivity can be obstructed by various biotic and abiotic stresses and thus these stresses are a threat to universal food security. The information on the use of viruses providing efficacy to plants facing growth challenges owing to stress is lacking. The role of induction of pathogen-related genes by microbes is also colossal in drought-endurance acquisition. Studies put forward the importance of viruses as sustainable means for defending plants against dual stress. A fundamental part of research focuses on a positive interplay between viruses and plants. Notably, the tomato yellow leaf curl virus (TYLCV) and tomato chlorosis virus (ToCV) possess the capacity to safeguard tomato host plants against severe drought conditions. This study aims to explore the combined effects of TYLCV, ToCV, and drought stress on two tomato cultivars, Money Maker (MK, UK) and Shalala (SH, Azerbaijan). The expression of pathogen-related four cellulose synthase gene families (CesA/Csl) which have been implicated in drought and virus resistance based on gene expression analysis, was assessed using the quantitative real-time polymerase chain reaction method. The molecular tests revealed significant upregulation of Ces-A2, Csl-D3,2, and Csl-D3,1 genes in TYLCV and ToCV-infected tomato plants. CesA/Csl genes, responsible for biosynthesis within the MK and SH tomato cultivars, play a role in defending against TYLCV and ToCV. Additionally, physiological parameters such as "relative water content," "specific leaf weight," "leaf area," and "dry biomass" were measured in dual-stressed tomatoes. Using these features, it might be possible to cultivate TYLCV-resistant plants during seasons characterized by water scarcity.