• Title/Summary/Keyword: Drought treatment

Search Result 214, Processing Time 0.021 seconds

Application of Non-photochemical Quenching on Screening of Osmotic Tolerance in Soybean Plants (콩의 삼투 저항성 검정에 있어서 Non-photochemical quenching의 적용)

  • Park, Sei-Joon;Kim, Hyun-Hee;Ko, Tae-Seok;Shim, Myong-Yong;Yoo, Sung-Yung;Park, So-Hyun;Kim, Tae-Gyeong;Eom, Ki-Cheol;Hong, Sun-Hee;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.390-399
    • /
    • 2010
  • Non-photochemical quenching (NPQ) values for utilizing them to detect osmotic tolerance in plants were examined with two different soybean cultivars, an osmotic tolerant soybean (Shinpaldalkong 2) and a control soybean (Taekwangkong). Two different stresses were applied to the cultivars as the restricted irrigations of 200 and 50 ml water $pot^{-1}\;d^{-1}$ for 5 days for a control and a drought stress, respectively, and a sodium chloride solution of 200 mmol for 6 days for a salt stress. The intact leaves of the two cultivars after treatment were used to measure chlorophyll fluorescence parameters, maximum efficiencies of photosystem II photochemistry (Fv/Fm), efficiencies of photosystem II photochemistry (${\Phi}_{PSII}$), $CO_2$ assimilation rate ($P_N$), and NPQ. Leaf water potentials of the two cultivars decreased from - 0.2 to - 0.8MPa by a drought treatment and from - 0.7 to - 1.7MPa by a salt treatment. Leaf water content of Shinpaldalkong 2 after a salt treatment was less decreased than that of Taekwangkong. $F_v/F_m$ values of both cultivars were not changed, while ${\Phi}_{PSII}$ and $P_N$ were decreased proportionally to leaf water potential decrease. The response of NPQ was occurred in Shinpaldalkong 2 under the drought and salt stresses. With Taekwangkong cultivar, only drought stress referred NPQ response. The cultivar differences on chlorophyll fluorescence parameters were found in the relationships between ${\Phi}_{PSII}$ and $P_N$, and between NPQ and ${\Phi}_{PSII}$. Although the positive relationships between ${\Phi}_{PSII}$ and $P_N$ were established on all treatments of both cultivars, the decreasing rate of ${\Phi}_{PSII}$ to $P_N$ was smaller in Shinpaldalkong 2 than Taekwangkong. The NPQ was increased according to the decrease of ${\Phi}_{PSII}$ by osmotic treatments in Shinpaldalkong 2. The complementary relationships between NPQ and ${\Phi}_{PSII}$ were well maintained at all treatments in Shinpaldalkong 2, while these relationships were lost at a salt treatment in Taekwangkong. Taken together, the results suggest that analysis of complementary relationships between ${\Phi}_{PSII}$ and NPQ could be more valuable and applicable for determining osmotic tolerance than single analysis of each parameter such as $F_v/F_m$, ${\Phi}_{PSII}$ and NPQ.

DEVELOPMENT OF ARTIFICIAL NEURAL NETWORK MODELS SUPPORTING RESERVOIR OPERATION FOR THE CONTROL OF DOWNSTREAM WATER QUALITY

  • Chung, Se-Woong;Kim, Ju-Hwan
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.143-153
    • /
    • 2002
  • As the natural flows in rivers dramatically decrease during drought season in Korea, a deterioration of river water quality is accelerated. Thus, consideration of downstream water quality responding to changes in reservoir release is essential for an integrated watershed management with regards to water quantity and quality. In this study, water quality models based on artificial neural networks (ANNs) method were developed using historical downstream water quality (rm $\NH_3$-N) data obtained from a water treatment plant in Geum river and reservoir release data from Daechung dam. A nonlinear multiple regression model was developed and compared with the ANN models. In the models, the rm NH$_3$-N concentration for next time step is dependent on dam outflow, river water quality data such as pH, alkalinity, temperature, and rm $\NH_3$-N of previous time step. The model parameters were estimated using monthly data from Jan. 1993 to Dec. 1998, then another set of monthly data between Jan. 1999 and Dec. 2000 were used for verification. The predictive performance of the models was evaluated by comparing the statistical characteristics of predicted data with those of observed data. According to the results, the ANN models showed a better performance than the regression model in the applied cases.

  • PDF

Effects of Transgenic Rice on Life History Traits of Daphnia magna in Life Table Experiments

  • Nam, Sung-Jin;Yang, Dong-Woo;Kim, Chang-Gi;Park, Sang-Kyu
    • Journal of Ecology and Environment
    • /
    • v.30 no.4
    • /
    • pp.319-324
    • /
    • 2007
  • To investigate the impacts of transgenic rice on freshwater organisms, we conducted two life table experiments using Daphnia magna for fifteen and twenty days, respectively. We examined life history traits such as population growth rates (r), reproductive rates ($R_0$), generation times, and survivorship. In the first experiment, we used non-drought-stressed transgenic and non-transgenic rice harvested in 2005. In the second study, we used non-transgenic and transgenic rice harvested in 2006 following drought stress. Each experiment involved three treatments in which D. magna neonates were fed with Selenastrum capricornutum (control treatment) and S. capricornutum with 5% aqueous extracts of non-transgenic rice (N-T) and transgenic rice (T). In the first experiment, D. magna showed reduced population growth rates and lowered fecundity in the N-T and T treatments. In the second experiment, D. magna receiving both transgenic and non-transgenic rice extracts showed very high mortality, low population growth rates and reproduction rates. We could not detect any significant negative effects of extracts from transgenic rice on D. magna life history traits at 95%.

Molecular cloning and characterization of a soybean GmMBY184 induced by abiotic stresses

  • Chung, Eun-Sook;Kim, Koung-Mee;Lee, Jai-Heon
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.175-181
    • /
    • 2012
  • Drought and high salinity stresses often imposes adverse effects on crop yield. MYB transcription factors have been shown to be an important regulator in defense responses to these environmental stresses. In this study, we have cloned and characterized a soybean gene GmMYB184 (Glycine max MYB transcription factor 184). Deduced amino acid sequences of GmMYB184 show highest homology with that from Vitis vinifera legume plant (75%). Different expression patterns of GmMYB184 mRNA were observed subjected to drought, cold, high salinity stress and abscisic acid treatment, suggesting its role in the signaling events in the osmotic stress-related defense response. Subcellular localization studies demonstrated that the GFP-GmMYB184 fusion protein was localized in the nucleus. Using the yeast assay system, the C-terminal region of GmMYB184 was found to be essential for the transactivation activity. These results indicate that the GmMYB184 may play a role in abiotic stress tolerance in plant.

Effects of Water Stress on Carotenoid and Proline Contents in Kale (Brassica oleracea var. acephala) leaves (수분스트레스가 케일 잎의 카로티노이드 및 프롤린 함량에 미치는 영향)

  • Lee, Hyo-Joon;Chun, Jin-Hyuk;Kim, Sun-Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.97-105
    • /
    • 2017
  • BACKGROUND : Environmental stress has a major effect on the growth and yields of vegetables, and can significantly affect nutritionally important phytochemicals, causing large economic losses. METHODS AND RESULTS : The present study was aimed at exploring the effects of water stress on the carotenoid and proline contents in kale leaves to understand drought tolerance of kale plants. Kale was randomly divided into two groups at 57 days after sowing (DAS). One of the groups was well-watered (WW) and the other was water stressed (WS). Harvesting of kale leaves was started one day after treatment (58 DAS) and continued for 10 days (~67 DAS). We investigated the status of plant growth (leaf number, length, width, fresh weight) of kale throughout the study. Carotenoid (lutein, ${\alpha}-carotene$, zeaxanthin, ${\beta}-carotene$) and proline contents were analyzed by high-performance liquid chromatography (HPLC). Our results showed that the total carotenoid contents ranged from 926.0 to 1,212.0 mg/kg dry wt. (at 3 and 2 days, respectively) in WW treatment and 887.8 to 1,157.4 mg/kg dry wt. (at 10 and 4 days, respectively) in WS treatment. The ratio of individual carotenoid to the total carotenoid contents of kale leaves was 51.4 for lutein, 4.44 for zeaxanthin, 2.76 for ${\alpha}-carotene$, and 41.4% for ${\beta}-carotene$. Total carotenoid contents showed a significant reduction from 7 days (1,037.2 mg/kg dry wt.) to 10 days (887.8 mg/kg dry wt.) in WS treatment. The lutein content did not show a significant difference in WW between 7 and 10 days after treatment but showed a significant difference in WS treatment. The ${\alpha}-carotene$ content showed no significant difference between the treatments. However, zeaxanthin content was higher during 4-10 days and ${\beta}-carotene$ content was lower during 6-10 days in WS than in WW on each harvest day. In WW, the proline content showed no significant difference, but in WS, the proline content started to increase at 7 days and almost doubled in 10 days. CONCLUSION : The marked increase in zeaxanthin and proline contents in kale leaves indicated that the two phytochemicals are associated with drought tolerance in the plant.

Effects on Water Quality and Rice Growth to Irrigation of Discharge Water from Municipal Waste Treatment Plant in Rice Paddy during Drought Periods (한발기 벼 재배시 하수종말처리장 방류수 관개에 따른 논의 수질 및 벼 생육에 미치는 영향)

  • Shin, Joung-Du;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;Kim, Jin-Ho;Yun, Sun-Gang;Choi, Chul-Mann
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.225-230
    • /
    • 2008
  • Objective of this study was to access the environmental impacts of the use of discharge water from municipal waste water treatment plant as alternative irrigation resources during drought season for rice cultivation. For the field experiments, it was observed that plant growth and yield characteristics at 20 days of alternative irrigation period with application of FAST (fertilizer application based on soil test) 50% were relatively the same as the control. For the surface water quality, it appeared that $EC_i$ (electrical conductivity of irrigation water) and SAR (sodium adsorption ratio) values of DMWT (discharge waters from municipal wastewater treatment plant) irrigation were twofold higher than those of ground water irrigation as the control regardless of fertilization levels. For the irrigation periods, there were not significantly difference between 10 and 20 days of treatments, but $EC_i$ and SAR values of surface water were highest at 30 days of irrigation periods at initial rice growing stages. Generally, $EC_i$ values of percolation water in all the treatments were gradually increasing until 30days after irrigation, and then decreasing to harvest stage. Overall, it might be considered that there was possibility to irrigate DMWT with application of FAST 50% for 20 days of drought periods at rice transplanting season. Furthermore, efficiency rate of alternative irrigation water for 20 days of drought period was 32.7% relative to the total annual irrigation water for rice cultivation.

Nutrient Leaching and Crop Uptake in Weighing Lysimeter Planted with Soybean as Affected by Water Management (중량식 라이시미터에서 콩 재배시 물관리 방법에 의한 양분의 용탈과 작물 흡수)

  • Lee, Ye-Jin;Han, Kyung-Hwa;Lee, Seul-Bi;Sung, Jwa-Kyung;Song, Yo-Sung;Lee, Deog-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.147-153
    • /
    • 2017
  • BACKGROUND: Soil water content strongly depends on weather condition and irrigation, and it could influence on crop nutrient use efficiency. This study was performed to assess nutrient uptake of soybean by soil water condition. METHODS AND RESULTS: In this study, nutrient leaching and crop uptake as affacted by water management practice was investigated using weighing lysimeter which is located in National institute of agricultural science, Wanju, Jeonbuk province from June 2015 to October 2016. Water supply for soybean (cv. Daewon) was managed with irrigation and rainfall. Nitrate leaching was greatest in the rainfall treatment at early July 2016. Yield of soybean in the rainfall treatment was only 25% compared to the irrigation due to the drought at flowering and podding period. The uptake of nitrogen was considerably reduced by drought whereas the uptake of phosphorus and potassium was less affected by drought. CONCLUSION: It was proven that nitrogen loss and uptake were dependent on soil water condition. Therefore, irrigation water management to maintain available soil moisture capacity is critical to nitrogen uptake and yield of soybean.

Growth Promotion of Tomato Plant under Drought Conditions by Treatment of Rhizobacteria Producing ACC Deaminase and Phytohormones (ACC Deaminase와 식물호르몬 생성 세균 처리에 의한 토마토 식물의 가뭄 조건에서의 생장)

  • Seo, Mi-So;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.46-50
    • /
    • 2013
  • Some rhizobacteria producing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase can make plant to continue growth under the stress conditions through lowering the level of phytohormone, ethylene which inhibits the plant growth and accelerates plant aging. In this study, some rhizobacteria producing ACC deaminase have been isolated from the rhizosphere of plants grown at sand beaches, and identified as Escherichia hermannii m-2, Enterobacter asburiae m-4, Pseudomonas thivervalensis BD2-26 and Pseudomonas brassicacearum subsp. neoaurantiaca BD3-35 through sequencing of 16S rRNA genes. Strain BD3-35 showed the highest activity of ACC deaminase among the isolates, 20.26 ${\alpha}$-ketobutyrate ${\mu}M/mg$ protein/h. Strains BD3-35 and BD2-26 secreted a phytohormone cytokinin, and strains m-4 and m-2 could produce auxin and abscisic acid, respectively. When these bacteria were applied to the 7-day old tomato plant under drought stress for 7 days, strains BD3-35, m-2, and m-4 increased the length of tomato root by 14, 15, and 35%, respectively, and strains m-2, BD2-26 and BD3-35 increased the dry weight of tomato plant by 22, 33, and 68%, respectively compared to the uninoculated control tomatoes. Therefore, these rhizobacteria may be utilized as a microbial fertilizer for the plants under drought stress.

Effects of treatment of Enterobacter ludwigii SJR3 on growth of tomato plant and its expression of stress-related genes under abiotic stresses (비생물적 스트레스 환경에서 Enterobacter ludwigii SJR3 처리 시 토마토의 생장과 스트레스-관련 유전자의 발현)

  • Kim, Na-Eun;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.148-156
    • /
    • 2016
  • This study examined effects of Enterobacter ludwigii SJR3 showing a high 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, on growth of tomato plant and its expression of stress-related genes under drought and salt stress. SJR3 strain was inoculated at $10^6cell/g$ soil to 4-week grown tomato plants, and drought and salt stresses were treated. After additional incubation for 1 week, root length, stem length, fresh weight and dry weight of tomato plants treated with SJR3 increased by 37.8, 37.2, 96.8 and 146.6%, respectively compared to those of uninoculated plants in drought stress environment, and they increased by 19.2, 25.4, 19.5, and 105.8%, respectively in salt stress environment. Proline content in tomato leaves increased significantly under stress conditions as one of a protecting substance against stresses, but proline contents in tomato treated with SJR3 decreased by 62.1 and 54.1%, respectively. Relative expression of genes encoding ACC oxidase, ACO1 and ACO4, ethylene response factor genes ERF1 and ERF4, and some other stress-related genes were examined from tomato leaves. Compared to the non-stressed tomato, expressions of all stress-related genes increased significantly in the stressed tomato, but gene expressions in the inoculated tomato were similar to those of no-stressed control tomato. Therefore, E. ludwigii SJR3 may play an important role in mitigating drought and salt stress in plants, and can increase productivity of crops under various abiotic stresses.

Influence of Water Stress on Growth and Yield in Safflower(Cartamus tinctorius L.) (단수 시기가 홍화의 생육과 수량에 미치는 영향)

  • Kim, Se-Jong;Park, Jun-Hong;Kim, Jae-Chul;Park, So-Deuk;Song, Kwan-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.303-306
    • /
    • 2006
  • This experiment was investigated the influence of water stress in growth and yields of safflower. The water stress treatment was early growth stage(Mar. 20~Apr. 18), middle growth stage(Apr. 29~May 28) and last growth stage(Jun. 8~Jul. 7) for 30 days, respectively. Stem length of plant was 127 cm in normal irrigation(control) state and that of growth middle stage at drought state was 96 cm, to be shorted more 31 cm than that of normal irrigation state, also other growth rate of plant was decreased, relatively. Number of effective flower bud per $m^2$ was 224 ea in normal irrigation state, 114 ea in growth middle stage at drought state. Yield of seed at drought state decreased 37% and 13% in growth middle stage(222 kg/10a) and last stage(307 kg/10a) than 353 kg/10a in normal irrigation state. According to the result, it could be estimated that optimum irrigation time(0.05 MPa) was 23days after non-rainfall at early growth stage(from sowing seed time to 30 days after sowing seed), 10 days in middle growth stage(41-70 days after sowing seed) and 9 days in last growth stage(81-110 days after sowing seed), to prevent the damage of drought.