• 제목/요약/키워드: Drought prediction

검색결과 111건 처리시간 0.034초

실시간 앙상블 가뭄전망정보 생산 체계 구축 및 평가 (Development & Evaluation of Real-time Ensemble Drought Prediction System)

  • 배덕효;안중배;김현경;김헌애;손경환;조세라;정의석
    • 대기
    • /
    • 제23권1호
    • /
    • pp.113-121
    • /
    • 2013
  • The objective of this study is to develop and evaluate the system to produce the real-time ensemble drought prediction data. Ensemble drought prediction consists of 3 processes (meteorological outlook using the multi-initial conditions, hydrological analysis and drought index calculation) therefore, more processing time and data is required than that of single member. For ensemble drought prediction, data process time is optimized and hardware of existing system is upgraded. Ensemble drought data is estimated for year 2012 and to evaluate the accuracy of drought prediction data by using ROC (Relative Operating Characteristics) analysis. We obtained 5 ensembles as optimal number and predicted drought condition for every tenth day i.e. 5th, 15th and 25th of each month. The drought indices used are SPI (Standard Precipitation Index), SRI (Standard Runoff Index), SSI (Standard Soil moisture Index). Drought conditions were determined based on results obtained for each ensemble member. Overall the results showed higher accuracy using ensemble members as compared to single. The ROC score of SRI and SSI showed significant improvement in drought period however SPI was higher in the demise period. The proposed ensemble drought prediction system can be contributed to drought forecasting techniques in Korea.

한반도·동아시아 지역의 실시간 가뭄 감시 및 전망 시스템 개발 (Development of Real-Time Drought Monitoring and Prediction System on Korea & East Asia Region)

  • 배덕효;손경환;안중배;홍자영;김광섭;정준석;정의석;김종군
    • 대기
    • /
    • 제22권2호
    • /
    • pp.267-277
    • /
    • 2012
  • The objectives of this study are to develop a real-time drought monitoring and prediction system on the East Asia domain and to evaluate the performance of the system by using past historical drought records. The system is mainly composed of two parts: drought monitoring for providing current drought indices with meteorological and hydrological conditions; drought outlooks for suggesting future drought indices and future hydrometeorological conditions. Both parts represent the drought conditions on the East Asia domain (latitude $21.15{\sim}50.15^{\circ}$, longitude $104.40{\sim}149.65^{\circ}$), Korea domain (latitude $30.40{\sim}43.15^{\circ}$, longitude $118.65{\sim}135.65^{\circ}$) and South Korea domain (latitude $30.40{\sim}43.15^{\circ}$, longitude $118.65{\sim}135.65^{\circ}$), respectively. The observed meteorological data from ASOS (Automated Surface Observing System) and AWS (Automatic Weather System) of KMA (Korean Meteorological Administration) and model-driven hydrological data from LSM (Land Surface model) are used for the real-time drought monitoring, while the monthly and seasonal weather forecast information from UM (Unified Model) of KMA are utilized for drought outlooks. For the evaluation of the system, past historical drought records occurred in Korea are surveyed and are compared with the application results of the system. The results demonstrated that the selected drought indices such as KMA drought index, SPI (3), SPI (6), PDSI, SRI and SSI are reasonable, especially, the performance of SRI and SSI provides higher accuracy that the others.

Satellite-based Drought Forecasting: Research Trends, Challenges, and Future Directions

  • Son, Bokyung;Im, Jungho;Park, Sumin;Lee, Jaese
    • 대한원격탐사학회지
    • /
    • 제37권4호
    • /
    • pp.815-831
    • /
    • 2021
  • Drought forecasting is crucial to minimize the damage to food security and water resources caused by drought. Satellite-based drought research has been conducted since 1980s, which includes drought monitoring, assessment, and prediction. Unlike numerous studies on drought monitoring and assessment for the past few decades, satellite-based drought forecasting has gained popularity in recent years. For successful drought forecasting, it is necessary to carefully identify the relationships between drought factors and drought conditions by drought type and lead time. This paper aims to provide an overview of recent research trends and challenges for satellite-based drought forecasts focusing on lead times. Based on the recent literature survey during the past decade, the satellite-based drought forecasting studies were divided into three groups by lead time (i.e., short-term, sub-seasonal, and seasonal) and reviewed with the characteristics of the predictors (i.e., drought factors) and predictands (i.e., drought indices). Then, three major challenges-difficulty in model generalization, model resolution and feature selection, and saturation of forecasting skill improvement-were discussed, which led to provide several future research directions of satellite-based drought forecasting.

AVHRR 위성영상을 이용한 가뭄평가 활용 방안 (Use Plan for a Drought Estimate Using NOAA AVHRR Images)

  • 김옥경;최진용;장민원;유승환
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.51-55
    • /
    • 2005
  • This study aims to evaluate applicability of AVHRR NDVI for drought prediction. Drought, one of the typical natural disasters, has damaged almost every year in different places and at time varied. An AVHRR satellite image can be a comprehensive tool to measure the drought because it is easy to obtain the vegetation status over the nationwide. This study explored a possibility of NOAA AVHRR NDVI applicability to drought because NDVI can provide plant vitality. Using May AVHRR imageries in 1998, 1999, and 2000, NDVIs are derived and compared with the rainfall amount to pursue the relationship between NDVI and drought. From the result, AVHRR NDVI showed a possible applicability in using drought prediction.

  • PDF

수문기상가뭄지수 (HCDI) 개발 및 가뭄 예측 효율성 평가 (Development of Hydroclimate Drought Index (HCDI) and Evaluation of Drought Prediction in South Korea)

  • 류재현;김정진;이경도
    • 한국농공학회논문집
    • /
    • 제61권1호
    • /
    • pp.31-44
    • /
    • 2019
  • The main objective of this research is to develop a hydroclimate drought index (HCDI) using the gridded climate data inputs in a Variable Infiltration Capacity (VIC) modeling platform. Typical drought indices, including, Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and Self-calibrated Palmer Drought Severity Index (SC-PDSI) in South Korea are also used and compared. Inverse Distance Weighting (IDW) method is applied to create the gridded climate data from 56 ground weather stations using topographic information between weather stations and the respective grid cell ($12km{\times}12km$). R statistical software packages are used to visualize HCDI in Google Earth. Skill score (SS) are computed to evaluate the drought predictability based on water information derived from the observed reservoir storage and the ground weather stations. The study indicates that the proposed HCDI with the gridded climate data input is promising in the sense that it can help us to predict potential drought extents and to mitigate its impacts in a changing climate. The longer term drought prediction (e.g., 9 and 12 month) capability, in particular, shows higher SS so that it can be used for climate-driven future droughts.

SWAT 모형을 이용한 상수도 취수원의 가뭄 예측 및 확산 연구 (A Study on Drought Prediction and Diffusion of Water Supply Intake Source Using SWAT Model)

  • 최정렬;조현재;라다혜;김지태
    • 대한토목학회논문집
    • /
    • 제39권6호
    • /
    • pp.743-750
    • /
    • 2019
  • 하천을 수원으로 하는 상수도 시설은 강수량 및 하천 유량과 같은 모니터링 설비가 없는 곳이 대부분이며, 갈수기 등 하천 유량 감소기에도 취수량 조절과 같은 가뭄대응을 위한 판단 기준이 없어 사전 대응이 곤란한 실정이다. 또한, 실제 가뭄 업무를 일선에서 처리하는 지자체 공무원 등이 지금까지 제시된 가뭄지수(SPI, PDSI 등) 및 확산 모델 등을 사전 대응에 활용하기에는 한계가 있는 것으로 나타났다. 이에 따라 본 연구에서는 장기유출모형(SWAT)의 매개변수 검·보정을 통해 장기간의 일단위 유출량을 추정하였으며, 감수곡선식을 도출하였다. 또한, 일단위 취수량과 감수곡선식의 관계분석을 통해 취수가능일수를 정량적으로 산정하였으며, 이를 용수공급 네트워크에 대입하여 읍면동 단위 적용 가능 범위를 제시하였다.

Drought Forecasting with Regionalization of Climate Variables and Generalized Linear Model

  • Yejin Kong;Taesam Lee;Joo-Heon Lee;Sejeong Lee
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.249-249
    • /
    • 2023
  • Spring drought forecasting in South Korea is essential due to the sknewness of rainfall which could lead to water shortage especially in spring when managed without prediction. Therefore, drought forecasting over South Korea was performed in the current study by thoroughly searching appropriate predictors from the lagged global climate variable, mean sea level pressure(MSLP), specifically in winter season for forecasting time lag. The target predictand defined as accumulated spring precipitation(ASP) was driven by the median of 93 weather stations in South Korea. Then, it was found that a number of points of the MSLP data were significantly cross-correlated with the ASP, and the points with high correlation were regionally grouped. The grouped variables with three regions: the Arctic Ocean (R1), South Pacific (R2), and South Africa (R3) were determined. The generalized linear model(GLM) was further applied for skewed marginal distribution in drought prediction. It was shown that the applied GLM presents reasonable performance in forecasting ASP. The results concluded that the presented regionalization of the climate variable, MSLP can be a good alternative in forecasting spring drought.

  • PDF

ESP 기법을 이용한 수문학적 가뭄전망의 활용성 평가 (Applicability Assessment of Hydrological Drought Outlook Using ESP Method)

  • 손경환;배덕효
    • 한국수자원학회논문집
    • /
    • 제48권7호
    • /
    • pp.581-593
    • /
    • 2015
  • 본 연구에서는 ESP (Ensemble Streamflow Prediction)기법을 활용한 가뭄전망 체계를 구축하고 가뭄예보에 있어 활용성을 평가하였다. 과거 관측 수문기상 및 지형정보를 이용하여 우리나라 전역에 지면모델(Land Surface Model, LSM)을 구축하고 유출량(Historical Runoff, HR)을 생산하였다. 또한, 모의기간 동안 과거 30개 기상자료와 초기 토양수분량을 이용하여 선행시간별(1, 2, 3개월) 전망된 유출량(Predicted Runoff, PR)을 생산하였다. 평가결과 여름 및 가을철 보다 봄철 및 겨울철에 정확도가 높았으며, 1개월 전망 이후로는 정확도가 낮게 나타났다. 가뭄지수는 국내 가뭄해석에 있어 검증된 표준유출지수(Standardized Runoff Index, SRI)를 활용하였으며, PR_SRI을 산정 및 평가하였다. 1, 2개월 전망에서는 과거 HR이 고려되어 ESP HR에 비해 정확도가 크게 개선됨을 알 수 있었다. 선행시간별 상관계수는 평균 0.71, 0.48, 0.00, 평균제곱근오차는 0.46, 0.76, 1.01로 나타났으며, 건조기에 정확도가 높게 나타나 1, 2개월 전망까지는 ESP를 활용한 국내 가뭄예보의 활용성이 높다고 판단된다.

베이지안 네트워크 및 의사결정 모형을 이용한 위성 강수자료 기반 기상학적 가뭄 전망 (Meteorological drought outlook with satellite precipitation data using Bayesian networks and decision-making model)

  • 신지예;김지은;이주헌;김태웅
    • 한국수자원학회논문집
    • /
    • 제52권4호
    • /
    • pp.279-289
    • /
    • 2019
  • 가뭄재해는 다른 재해와 다르게 광범위한 공간에 걸쳐서 충분한 강우가 발생하기 전까지 오랜 기간 동안 발생되는 특성이 있다. 위성 영상은 시공간적으로 지속적인 강수량 관측을 제공할 수 있다. 본 연구는 위성 영상 기반의 강수자료를 활용하여 기상학적 가뭄 전망 모형을 개발하였다. PERSIANN_CDR, TRMM 3B42와 GPM IMERG 영상을 활용하여 강수 자료를 구축한 뒤, 표준강수지수(SPI)를 기반으로 기상학적 가뭄을 정의하였다. 과거의 가뭄 정보와 물리적 예측 모형 기반의 가뭄 예측 결과를 결합할 수 있는 베이지안 네트워크 기반 가뭄 예측 기법을 이용하여 확률론적 가뭄 예측 결과를 생산하였으며, 가뭄 예측결과를 가뭄 전망 의사결정 모형에 적용하여 가뭄 전망 결과를 도출하였다. 가뭄 전망 정보는 가뭄 발생, 지속, 종결, 가뭄 없음의 4단계로 구분하였다. 본 연구의 가뭄 전망 결과는 ROC 분석을 통하여 물리적 예측 모형인 다중모형 앙상블(MME)을 활용한 가뭄 전망 결과와 전망 성능을 비교하였다. 그 결과, 2~3개월 가뭄 전망에 대한 가뭄 발생 및 지속의 단계에서는 MME 모형보다 높은 전망성능을 보여주었다.

유효가뭄지수(EDI)를 이용한 한반도 미래 가뭄 특성 전망 (Projection of Future Changes in Drought Characteristics in Korea Peninsula Using Effective Drought Index)

  • 곽용석;조재필;정임국;김도우;장상민
    • 한국기후변화학회지
    • /
    • 제9권1호
    • /
    • pp.31-45
    • /
    • 2018
  • This study implemented the prediction of drought properties (number of drought events, intensity, duration) using the user-oriented systematical procedures of downscaling climate change scenarios based the multiple global climate models (GCMs), AIMS (APCC Integrated Modeling Solution) program. The drought properties were defined and estimated with Effective Drought Index (EDI). The optimal 10 models among 29 GCMs were selected, by the estimation of the spatial and temporal reproducibility about the five climate change indices related with precipitation. In addition, Simple Quantile Mapping (SQM) as the downscaling technique is much better in describing the observed precipitation events than Spatial Disaggregation Quantile Delta Mapping (SDQDM). Even though the procedure was systematically applied, there are still limitations in describing the observed spatial precipitation properties well due to the offset of spatial variability in multi-model ensemble (MME) analysis. As a result, the farther into the future, the duration and the number of drought generation will be decreased, while the intensity of drought will be increased. Regionally, the drought at the central regions of the Korean Peninsula is expected to be mitigated, while that at the southern regions are expected to be severe.