• Title/Summary/Keyword: Droplet merging

Search Result 17, Processing Time 0.026 seconds

Numerical Study of Droplet Dynamics in a PEMFC Air Flow Channel (고분자전해질형 연료전지의 공기 채널 내에서의 액적 거동에 대한 수치적 연구)

  • Choi, Ji-Young;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2390-2395
    • /
    • 2008
  • The water droplet motion in an air flow microchannel with pores through which water emerges is studied numerically by solving the equations governing the conservation of mass and momentum. The gas-liquid interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface and is modified to implement the contact angle conditions on the wall and pores. The numerical results show that the droplet growth and detachment pattern depend significantly on the contact angle and inlet air velocity. Also, the dynamic interaction between the droplets growing on multiple pores is investigated. The pore arrangement subject to droplet merging is found to be not effective for water removal.

  • PDF

NUMERICAL STUDY ON THE MICRO-LINE PATTERNING PROCESS USING AN INKJET PRINGTING METHOD (잉크젯 방법을 통한 마이크로 라인 형성에 관한 수치적 연구)

  • Lee, W.R.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.548-550
    • /
    • 2010
  • The droplet motion on a flat substrate with contact angle hysteresis is studied by solving the equations governing the conservation of mass and momentum. The liquid- gas interface is determined by an level-set method which is based on a sharp-interface representation for accurately imposing the matching or coupling conditions at the interface. The method is modified to treat the dynamic contact angle at the liquid-gas-solid interface. The computations are performed to investigate a droplet impact and merging pattern on a flat substrate to find a optimal condition in a micro-line patterning process. The effects of dynamic contact angles on droplet motion are quantified.

  • PDF

A Study of the Behavior of Droplet Impacting on a Horizontal Wire (수평 와이어와 충돌하는 액적 거동에 관한 연구)

  • Kang, W.J.;Kim, J.Y.;Park, J.H.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.103-110
    • /
    • 2020
  • In this study, the behavior of water droplet impacting on a thin horizontal wire was visualized by time-delay photography. The impact behavior modes, critical capture speed and trapped mass were analyzed by changing the droplet size, velocity, wire diameter and eccentricity ratio. As the Weber number increased, the hanging, merging, and splitting modes appeared sequentially for the case of central impact, and the hanging and non-splitting modes appeared for the case of off-center impact. The boundary We number of each mode was affected by the diameter ratio. The critical capture speed was affected much by the degree of eccentricity. For all diameter ratios, it was higher for the case of central impact than for off-center impact. The trapped mass was larger for the case of central impact than for off-center impact and it increased with the smaller We number and the larger diameter ratio.

NUMERICAL STUDY OF THE DROPLET EJECTION BEHAVIOR OF NEWTONIAN AND SHEAR-THINNING FLUIDS (뉴튼유체와 전단희석유체의 액적분사 거동에 대한 수치해석적 연구)

  • Kim, E.;Baek, J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.33-38
    • /
    • 2012
  • The droplet ejection behavior from drop-on-demand printhead are investigated numerically for Newtonian and shear-thinning fluid. The numerical simulation is performed using a volume-of-fluid model. In this study, we compare the printable range in terms of Z number and pinch-off time for Newtonian and shear-thinning fluids. The printability range are found to be 1.08 $$\leq_-$$ Z $$\leq_-$$ 12.9 for Newtonian fluid and 0.8 $$\leq_-$$ Z $$\leq_-$$ 12.9 for shear-thinning fluid. However, air entrainment is observed during merging of primary and satellite droplet within the printability range. The pinch-off time of the shear-thinning fluid is apparently shorter compared to the corresponding Newtonian fluid due to shear-thinning effects and the differences in the pinch-off time is enlarged significantly when the capillary number is larger than 0.5.

Investigation of Droplet Growth and Heat Transfer Characteristics during Dropwise Condensation on Hydrophobic Copper Surface (소수성 구리 표면에서의 액적 응축에 관한 액적 성장 및 열전달 특성 연구)

  • Lee, Hyung Ju;Jeong, Chan Ho;Kim, Dae Yun;Moon, Joo Hyun;Lee, Jae Bin;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.23 no.3
    • /
    • pp.149-153
    • /
    • 2018
  • The present study investigates the heat transfer characteristics of droplet growth during dropwise condensation on the hydrophobic copper surface. We use the copper specimen coated by the self-assembled layer and conduct the real-time measurement of droplet size and spatial distribution of condensates during condensation with the use of the K2 lens (long distance microscope lens) and CMOS camera. The temperatures are measured by three RTDs (resistance temperature detectors) that are located through the holes made in the specimen. The surface temperature is estimated by the measured temperatures with the use of the one-dimensional conduction equation. It is observed that the droplets on the surface are growing up and merging, causing larger droplets. The experimental results show that there are three distinct regimes; in the first regime, individual small droplets are created on the surface in the early stage of condensation, and they are getting larger owing to direct condensation and coalescence with other droplets. In the second and third regimes, the coalescence occurs mainly, and the droplets are detached from the surface. Also, the fall-off time becomes faster as the surface wettability decreases. In particular, the heat transfer coefficient increases substantially with the decrease in wettability because of faster removal of droplets on the surfaces for lower wettability.

Coalescence of Two Oppositely Charged Droplets at Constant Electric Potential

  • Lee, Dong Woog;Kang, In Seok
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.247-253
    • /
    • 2021
  • Electrocoalescence is an active technique in petroleum industry, formation of raindrop in cloud, and digital microfluidics. In the present work, electrocoalescence of two droplets under the constant electric potential in air was studied. Through this experiment, we found that the electrocoalescence process could be divided three phases; deformation, formation of liquid bridge, and merging. And the condition for formation of liquid bridge between two droplets was obtained. For the connection of experimental result in constant potential condition with general case in constant charge condition, relationship of charge and potential difference was deduced by numerical computation. In high electric potential case, flat interfaces after recoiling were observed. It was interpreted through a numerical simulation of electric field.

Visualization of Vortex Flow over a Delta Wing with LEX (LEX를 갖는 삼각날개의 와유동 가시화)

  • Shon Myong Hwan;Chang Jo Won
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.52-57
    • /
    • 2004
  • The development and interaction of vortices over a delta wing with leading edge extension (LEX) was investigated through off-surface flow visualization using micro water droplets and a laser beam sheet. Angles of attack of $20^{\circ}$ and 24$^{\circ}$ were tested at sideslip angles of $0^{\circ}$, $-5^{\circ}$, and $-10^{\circ}$ The flow Reynolds number based on the main-wing root chord was $1.82{\times}10^{5}$. The wing vortex and the LEX vortex coiled around each other while maintaining comparable strength and identity at a zero sideslip. The increase of angle of attack intensified the coiling and shifted the cores of the wing and LEX vortices inboard and upward. By sideslip, the coiling, the merging and the diffusion of the wing and LEX vortices were increased on the windward side, whereas they were delayed significantly on the leeward side. The present study confirmed that the sideslip angle had a profound effect on the vortex structure and interaction of a delta wing with LEX, which characterized the vortex-induced aerodynamic load.

  • PDF