• Title/Summary/Keyword: Droplet mean diameter

Search Result 163, Processing Time 0.025 seconds

An Experimental Study of the Micro Turbojet Engine Fuel Injection System

  • Choi, Hyun-Kyung;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.1-5
    • /
    • 2008
  • An experimental study was performed to develop the rotational fuel injection system of the micro turbojet engine. In this system, fuel is sprayed by centrifugal forces of engine shaft. The test rig was designed and manufactured to get droplet information on combustion space. This experimental apparatus consist of a high speed rotational device(Air-Spindle), fuel feeder, rotational fuel injector and acrylic case. To understand spray characteristics, spray droplet size, velocity and distribution were measured by PDPA (Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, the length of liquid column from injection orifice is controlled by the rotational speeds and Sauter Mean Diameter(SMD) is decreased with rotational speed. Also, Sauter Mean Diameter is increased as increasing mass flow rate at same rotational speeds.

  • PDF

Effect of Nozzle Hole Number on Atomization Characteristics of DME Fuel Spray using High Pressure Injector (고압 인젝터의 노즐 홀 수가 DME 연료분무의 미립화 특성에 미치는 영향)

  • Lee, Jongtae;Lee, Sanghoon;Chon, Mun Soo
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.216-220
    • /
    • 2014
  • This paper presents effect of nozzle hole number on atomization characteristic of DME fuel spray using three different type of injector having the hole number of 6, 7 and 8. For this study, PDPA(phase Doppler particle analyzer) experiment was performed in terms of $T_{ASOE}$ under various injection pressure. To compare general trend of atomization characteristic, the law data were ensemble averaged based on $T_{eng}$ of 0.2 ms. Results showed that the droplet diameter in terms of SMD(Sauter Mean Diameter) was reduced as increase in injection pressure. Increasing the number of hole lead to reduce in droplet diameter, but no significant reduction in diameter was observed between hole number of 7 and that of 8. In addition, increasing the number of hole resulted in decrease in droplet velocity which is considered as the effect of reduction in spray momentum due to decreasing of fuel quantity per each hole.

Spray characteristics on mixing region scale of twin fluid atomizer (이류체 분사노즐의 혼합영역 형상에 따른 분무특성)

  • 김병문;김혁주;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2147-2159
    • /
    • 1991
  • The effects of principal dimensions of internal mixing twin-fluid atomized and operating conditions on the atomizing characteristics are experimentally investigated. The tests are conducted over the wide range of air/liquid ratio to predict influences of the diameter and length of nozzle, contacting angle between air and liquid in the mixing chamber, and air orifice diameter on the mean drop size(SMD), spray angle, distribution of drop size, and spray dispersion, And also, initial distribution of liquid column by air stream within the mixing chamber are observed through the transparent nozzles. A He-Ne laser particle sizer(MALVERN Model 2604) was used to measure the Sauter.s mean diameter( $D_{321}$) and droplet sizes distribution. In this experiment the air/liquid ratio, mixing length and nozzle diameter have a great influence on SMD, spray angle, droplet sizes distribution and spray dispersion.

Effect of Injection Condition on the Diesel. Fuel Atomization in a Multi-Hole Nozzle (다공 노즐에서 분사조건이 디젤 연료의 미립화 특성에 미치는 영향)

  • Sub, Hyun-Kyu;Kim, Jee-Won;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2009
  • This paper present the diesel fuel spray evolution and atomization performance in a multi-hole nozzle in terms of injection rate, spray evolutions, and mean diameter and velocity of droplets in a compression ignition engine. In order to study the effect of split injection on the diesel fuel spray and atomization characteristic in a multi-hole nozzle, the test nozzle that has two-row small orifice with 0.2 mm interval was used. The time based fuel injection rate characteristics was analyzed from the pressure variation generated in a measuring tube. The spray characteristics of a multi-hole nozzle were visualized and measured by spray visualization system and phase Doppler particle analyzer (PDPA) system. It was revealed that the total injected fuel quantities of split injection are smaller than those of single injection condition. In case of injection rate characteristics, the split injection is a little lower than single injection and the peak value of second injection rate is lower than single injection. The spray velocity of split injection is also lower because of short energizing duration and small injection mass. It can not observe the improvement of droplet atomization due to the split injection, however, it enhances the droplet distributions at the early stage of fuel injection.

  • PDF

Spatial Distribution Characteristics of Small LRE-injector's Spray-droplet According to the Variation of Fuel-injection Pressure (소형 액체로켓엔진 인젝터 분무의 연료분사압력 변이에 따른 액적의 공간분포 특성)

  • Jung, Hun;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-8
    • /
    • 2008
  • Dual-mode Phase Doppler Anemometry (DPDA) was used to scrutinize the spatial distribution characteristics of spray emanating from a small Liquid-Rocket Engine (LRE) injector. Droplet size and velocity were measured according to the variation of injection pressure along the plane normal to the spray stream and then the spray characteristic parameters such as Arithmetic Mean Diameter (AMD), Sauter Mean Diameter (SMD), number density, span of drop size distribution, and volume flux were deduced for an investigation of spray breakup characteristics. As the injection pressure increases, the number density, span, and volume flux of spray droplets become higher, whereas the AMD gets smaller.

A Study on the Atomization Characteristics of the Ultrasonic-Energy-Irradiation High Viscosity Biodiesel Blended Fuel (초음파 에너지 조사 고 점도 바이오디젤 혼합연료의 미립화 특성에 관한 연구)

  • Song Yong-Seek;Yang In-Kwon;Kim Bong-Seock;Ryu Jung-In
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.235-241
    • /
    • 2004
  • This experiment was undertaken to investigate the atomization characteristics of the high viscosity biodiesel blended fuel and ultrasonic energy irradiation one. Test fuels were conventional diesel fuel and biodiesel one. We compared to the characteristics of viscosity and surface tension, SMD between high viscosity biodiesel blended fuel and ultrasonic energy irradiation one. Sauter mean diameter was measured under the variation of the spray distance. Viscosity and surface tension were measured under the variation of the time trace. To measure the droplet size, we used the Malvern system 2600c. Droplet size distribution was analyzed from the result data of Malvern system. Through this experiment, we found that the condition of the ultrasonic energy irradiation situation had smaller Sauter mean diameter of droplet, viscosity and surface tension than those of the conventional situation.

A Numerical Analysis on the Characteristics of Spray by Swirl Injector in Gas Turbine Combustor (가스터빈연소기에서 스월 인젝터의 분무특성에 관한 연구)

  • 이성혁;유홍선;이인섭;홍성국
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.30-39
    • /
    • 2000
  • The present paper deals with the numerical simulation for the spray characteristics with swirling turbulent flows and dilution flows from swirl injectors in a simplified can type of gas turbine combustor. The main objective is to investigate the characteristics of swirling turbulent flows with dilution flows and to provide the qualitative results for the spray characteristics such as the droplet distribution and Sauter Mean Diameter(SMD). The gas-phase equations based on Eulerian approach were discretized by Finite Volume Method, together with SIMPLE algorithm and the Reynolds -Stress-Model. The liquid-phase equations based on Lagrangian method were used to predict the droplet behavior. The results of preliminary test are generally in good agreement with experimental data, and show that the anisotropy exists in the primary zone due to swirl velocity and injected air from primary injector, and then gradually decays due to turbulent mixing and consequently near-isotropy occurs in the region between primary and dilution zones. For the spray characteristics, it is indicated that the swirling flows of primary jet region increase the droplet atomization. In addition, it is showed that the swirling flows at the inlet region lead the air-fuel mixture to be distributed near the igniter and can significantly affect the spray behavior in the primary jet region.

  • PDF

Experimental Analysis and Numerical Modeling Using LISA-DDB Hybrid Breakup Model of Direct Injected Gasoline Spray

  • Park, Sung-Wook;Kim, Hyung-Jun;Lee, Chang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1812-1819
    • /
    • 2003
  • This paper presents the effect of injection pressure on the atomization characteristics of high-pressure injector in a direct injection gasoline engine both experimentally and numerically. The atomization characteristics such as mean droplet size, mean velocity, and velocity distribution were measured by phase Doppler particle analyzer. The spray development, spray penetration, and global spray structure were visualized using a laser sheet method. In order to investigate the atomization process in more detail, the calculations with the LISA-DDB hybrid model were performed. The results provide the effect of injection pressure on the macroscopic and microscopic behaviors such as spray development, spray penetration, mean droplet size, and mean velocity distribution. It is revealed that the accuracy of prediction is promoted by using the LISA-DDB hybrid breakup model, comparing to the original LISA model or TAB model alone. And the characteristics of the primary and secondary breakups have been investigated by numerical approach.

Effect of ambient conditions on the spray development and atomization characteristics of a gasoline spray injected through a direct injection system (분위기 조건이 직접 분사식 가솔린 분무의 발달 과정 및 미립화 특성에 미치는 영향)

  • Ha, S.Y.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.47-53
    • /
    • 2005
  • This paper presents the effects of ambient pressure on atomization characteristics of high-Pressure injector in a direct injection gasoline engine both experimentally and numerically. The atomization characteristics such as mean droplet size, mean velocity, and velocity distribution were measured by phase Doppler particle analyzer. The spray development, spray penetration, and global spray structure were visualized using a shadowgraph technique. In order to investigate the atomization process numerically, the LISA-DDB hybrid model was utilized. This breakup model assumes that the primary breakup occurs when the amplitude of the unstable waves is equal to the radius of the ligament of liquid sheet near the nozzle and the droplet deformation induces the secondary breakup. The results provide the effect of ambient pressure on the macroscopic and microscopic behaviors such as spray development, spray penetration, mean droplet size, and mean velocity distribution. It is also revealed that the accuracy of prediction of LISA-DDB hybrid model is pretty good in terms of spray developing process, spray tip penetration, and SMD distribution.

  • PDF

Behavior of Impinging Droplet on a Solid Surface for the Variation of Fuel Temperature (연료 온도 변화에 따른 평판 충돌 액적의 거동에 관한 연구)

  • Lee, Dong-Jo;Kim, Ho-Yong;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.167-173
    • /
    • 2003
  • An experimental study on the behavior of droplets impinging on a solid flat surface was carried out in the present study. Breakup of a liquid droplet impinging on a solid surface has been investigated experimentally for various fuels with different properties. The fuel temperature and incident angle were chosen as major parameters. And fuel temperature and incident angle varied in the range from $-20^{\circ}C$ to $30^{\circ}C$ and from $30^{\circ}$ to $60^{\circ}$, respectively, were investigated. It was found that the variation of fuel temperature influences upon droplet mean diameter which were bounced out from the solid surface. As the increases of incident angle, the break-out mass flow rate increases. This causes the decrease of liquid film flow rate. The larger incident angle gives less liquid film flow rate.

  • PDF