• Title/Summary/Keyword: Droplet flame

Search Result 94, Processing Time 0.02 seconds

A Study on Blend Effect of Fuel in Flame Spread Along An One-Dimensional Droplet Array (일차원 액적 배열의 화염 퍼짐에 있어서 연료의 혼합 효과에 관한 연구)

  • Park, Jeong;Kobayashi, Hideaki;Niioka, Takashi
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.1-11
    • /
    • 1998
  • Experimental investigation on flame spread of blended fuel droplet arrays has been conducted for droplet diameters of 1.0mm and 0.75mm using high-speed chemiluminescence images of OH radical. The flame spread rate is measured with blended fuel composition, droplet diameter, and droplet spacing. Flame spread is categorized into two: a continuous mode and an intermittent one. There exist a limit droplet spacing, above which flame does not spread, and a droplet spacing of maximum flame spread, which is closely related to flame diameter. It is seen that flame spread rate is mainly dependent upon the relative position of flame zone within a droplet spacing. In case of large droplet, the increase of % volume of Heptane induces the shift of limit droplet spacing to a larger spacing since volatile Heptane plays a role of an enhancer of flame spread rate. In case of small droplet, the increase of % volume of Heptane leads to the shift of limit droplet spacing to a smaller droplet spacing. This is so because of the delayed chemical reaction time by the rapid increase of mass flux of fuel vapor for small droplet.

  • PDF

An Experimental Study on Flame Spread in an One-Dimensional Droplet Array (일차원 액적 배열하에서 화염 퍼짐에 관한 실험적 연구)

  • Park, Jeong;Shin, Hyun Dong;Kobayashi, Hideaki;Niioka, Takashi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.131-139
    • /
    • 1999
  • Experimental investigations on flame spread in droplet arrays have been conducted under supercritical ambient pressures of fuel droplet. Flame spread rates are measured for n-Decane droplet of diameters of 0.75 and 1.0mm, using high speed images of OH chemiluminescence up to 3.0MPa. The pattern of flame spread is categorized into two: a continuous mode and an intermittent one. There exists a limit droplet spacing, above which flame spread does not occur. Flame spread rate with the decrease of droplet spacing increases and then decreases after takin& a maximum. It is also seen that there exists a limit ambient pressure, above which flame spread does not occur. Flame spread rate decreases monotonically with the increase of ambient pressure. Exceptionally, In the case of a small droplet spacing, flame spread with the increase of ambient pressure is extended to supercritical pressures of fuel droplet. This is caused by enhanced vaporization with the increase of ambient pressure. Consequently, in flame spread with droplet droplet spacing, the relative position of flame to droplet spacing plays an important role. The monotonic decrease with ambient pressure is mainly related to the reduction of flame radius in subcritical pressures and the extension to supercritical pressures of flame spread is caused by the reduction of ignition time of unburnt droplet due to the enhanced vaporization at supercritical pressures.

Influence of Initial Diameter on the Combustion Characteristics of n-heptane Droplet (초기 직경이 n-heptane 액적 연소 특성에 미치는 영향)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.94-99
    • /
    • 2013
  • The spherically-symmetric burning of an isolated droplet is a dynamic problem that involves the coupling of chemical reactions and multi-phase flow with phase change. For the improved understanding of these phenomena, this paper presents the numerical results on the n-heptane droplet combustion conducted at a 1 atm ambient pressure in three different initial droplet diameter ($d_0$). The main purpose of this study is to provide basic information of droplet burning, extinction and flame behavior of n-heptane and improve the ability of theoretical prediction of these phenomena. To achieve these, the numerical analysis was conducted in terms of normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

Study on the Combustion Characteristics of Methanol Fuel Droplet (Methanol 연료 액적의 연소 특성에 관한 연구)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.109-114
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet burning, extinction process and flame behavior of methanol fuel and improve the ability of theoretical prediction of these phenomena. For the improved understanding of these phenomena, this paper presents the experimental results on the methanol droplet combustion conducted under various initial droplet diameters ($d_0$), ambient pressure ($P_{amb}$), and oxygen concentration ($O_2$) conditions. To achieve this, the experimental study was conducted in terms of burning rate (K) with normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

Observation on Double-droplet Combustion Speed in Premixed Spray Flame (예혼합 분무화염내의 이중적 액적 연소속도에 관한 관찰)

  • Lee, Chi-Woo;Shim, Han-Sub
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.119-126
    • /
    • 2004
  • In order to elucidate the modes of double-droplet combustion speed in premixed spray flame, the difference between flame propagation speed and droplet cluster disappearance speed are experimentally investigated using a premixed spray burner system, It was confirmed that flame speed concerned with premixed-mode combustion in the spray flame was approximately 2.0 m/s in average while mean disappearance speed of droplet clusters, which were dominated by diffusion-mode combustion in downstream of the flame, was evaluated as much as 0.45 m/s. It was clarified that both characteristics of premixed-mode and diffusion-mode combustion in spray flames are of much difference in nature, even though both speed, which are supposed to depend on local properties of the spray itself and flow conditions surrounding droplet clusters, are scattered in experiments.

An Experimental Study on Flame Spread in One-Dimensional Droplet Array with Forced Convection (강제 대류하에서 일차원 액적 배열내의 화염 퍼짐에 관한 실험적 연구)

  • Park, Jeong;Lee, Kiman;Niioka, Takashi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.68-74
    • /
    • 2000
  • Experimental investigation on flame spread along suspended droplet arrays have been conducted with various droplet spacings and ambient air velocities. Especially, an opposed air stream is introduced to simulate fundamental flame spread behaviors in spray combustion. High-speed chemiluminescence imaging technique of OH radicals has been adopted to measure flame spread rates and to observe various flame spread behaviors. The fuel used is n-Decane and the air velocity varies from 0 to 17cm/s. The pattern of flame spread is grouped into two: a continuous mode and an intermittent one. It is found that there exists droplet spcings, above which flame spread does not occur. The increase of ambient air velocity causes the limit droplet spacing of flame spread to become small due to the increase of apparent flame stretch. As the ambient air velocity decreases, flame spread rate increases and then decreases after taking a maximum flame spread rate. This suggests that there exists a moderate air flowing to give a maximum flame spread rate due to enhanced chemical reaction by the increase of oxidizer concentration.

Combustion Characteristics of Spherical Droplet in Turbulent Flow Field (난류 유동장 내 구형 액적의 연소특성)

  • Cho, Chong-Pyo;Kim, Ho-Young;Yoon, Suk-Goo
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.132-137
    • /
    • 2005
  • The burning characteristics of interacting spherical droplet in a turbulent flow are numerically investigated. The transient combustion of 3-dimensionally arranged droplets, both the fixed streamwise droplet distances of 3 radii and 10 radii and different turbulence intensities, is studied. The results obtained from the present numerical analysis show that droplet vaporization rate for heptane droplet is insensitive to turbulence intensity, and that the transient flame configuration and retardation of droplet surface temperature augmentation with streamwise droplet spacing substantially influence vaporization process of interacting droplets. Single flame mode in which individual flames are merged into single flame, with decreasing streamwise droplet spacing, becomes faster. Therefore, vaporization rate of the second droplet with decreasing streamwise droplet spacing decreases remarkably with flame movement.

  • PDF

Comparative Study of Flame Spread Behaviors in One Dimensional Droplet Array Under Supercritical Pressures of Normal Gravity and Microgravity (통상 및 미소 중력의 초임계 압력하에서 일차원 액적 배열의 화염 퍼짐 거동의 비교 연구)

  • Park, Jeong;Shin, Hyun Dong;Kobayashi, Hideaki;Niioka, Takashi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.140-148
    • /
    • 1999
  • Experiments on flame spread in an one-dimensional droplet array up to supercritical pressures of fuel droplet have been conducted In normal gravity and microgravity. Evaporating process around unburnt droplet is observed through high-speed Schlieren and direct visualizations in detail, and flame spread rate is measured using high speed chemiluminescence images of OH radical. Flame spread behaviors are categorized into three: flame spread is continuous at low pressures and is regularly intermittent up to the critical pressure of fuel. flame spread is irregularly intermittent and zig-zag at supercritical pressures of fuel. At atmospheric pressure, the limit droplet spacing and the droplet spacing of maximum flame spread rate in microgravity are larger than those in normal gravity. In microgravity, the flame spread rate with the increase of ambient pressure decreases initially, takes a minimum, and then decreases after taking maximum. This is so because the flame spread time is determined by competing effects between the increased transfer time of thermal boundary layer due to reduced flame diameter and the reduced ignition delay time in terms of the increase of ambient pressure. Consequently, it is found that flame spread behaviors in microgravity are considerably different from those in normal gravity due to the absence of natural convection.

Interaction of burning droplets with internal circulation (내부순환유동을 고려한 연소하는 액적들의 상호작용)

  • Cho, Chong-Pyo;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.183-191
    • /
    • 2004
  • The burning characteristics of interacting droplets with internal circulation in a convective flow are numerically investigated at various Reynolds numbers. The transient combustion of 2-dimensionally arranged droplets, both the fixed droplet distances of 5 radii to 40 radii horizontally and 4 radii to 24 radii vertically, is studied. The results obtained from the present numerical analysis reveal that the transient flame configuration and retardation of droplet internal motion with the horizontal or vertical droplet spacing substantially influence lifetime of interacting droplets. At a low Reynolds number, lifetime of the two droplets with decreasing horizontal droplet spacing increases monotonically, whereas their lifetime with decreasing vertical droplet spacing decreases due to flow acceleration. This flow acceleration effect is reversed when the vertical droplet spacing is smaller than 5 radii in which decreasing flame penetration depth causes the reduction of heat transfer from flame to droplets. At a high Reynolds number, however, lifetime of the first droplet is hardly affected by either the horizontal droplet spacing or flow acceleration effect. Lifetime with decreasing vertical droplet spacing increases due to reduction of flame penetration depth. Lifetime of interacting droplets exhibits a strong dependence on Reynolds number, the horizontal droplet spacing and the vertical droplet spacing and can be con-elated well with these conditions to that of single burning droplet.

  • PDF

Numerical Study on the Interaction of Liquid Fuel Droplets in the Reacting Flow Field (연소 유동장 내 액체 연료 액적간의 상호작용에 대한 수치적 연구)

  • Cho, Chong-Pyo;Kim, Ho-Young;Park, Sim-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.63-71
    • /
    • 2001
  • The objective of this work is to elucidate the details of two key factors dominating the droplet buring behavior in sprays : droplet-droplet interaction and convective flow. The combustion of a one-dimensional linear droplet array with a convective flow has been studied. A one-step, second order model was employed to simulate the chemical reaction in the combustion process. Results for droplet arrays burning at two Reynolds numbers, 50 and 100, two horizontal droplet spacings, 5 and 11 radii, and two vertical droplet spacing, 2 and 4 radii, were obtained. The results indicate the droplet burning behavior is affected by Reynolds number, droplet-droplet spacing, and the relative location of droplets in the array. Droplet-droplet interaction was found to be strong for arrays with smaller droplet spacing.

  • PDF