• Title/Summary/Keyword: Droplet evaporation

Search Result 175, Processing Time 0.027 seconds

Effect of urbanization on the light precipitation in the mid-Korean peninsula (한반도 중부지역에서 약한 강수에 미치는 도시화 효과)

  • Eun, Seung-Hee;Chae, Sang-Hee;Kim, Byung-Gon;Chang, Ki-Ho
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.229-241
    • /
    • 2011
  • The continuous urbanizations by a rapid economic growth and a steady increase in population are expected to have a possible impact on meteorology in the downwind region. Long-term (1972~2007) trends of precipitation have been examined in the mid-Korean peninsula for the westerly condition only, along with the sensitivity simulations for a golden day (11 February 2009). During the long-term period, both precipitation amount (PA) and frequency (PF) in the downwind region (Chuncheon, Wonju, Hongcheon) of urban area significantly increased for the westerly and light precipitation ($PA{\leq}1mm\;d^{-1}$) cases, whereas PA and PF in the mountainous region (Daegwallyeong) decreased. The enhancement ratio of PA and PF for the downwind region vs. urban region remarkably increased, which implies a possible urbanization effect on downwind precipitation. In addition, the WRF simulation applied for one golden day demonstrates enhanced updraft and its associated convergence in the downwind area (about 60 km), leading to an increase in the cloud mixing ratio. The sensitivity experiments with the change in surface roughness demonstrates a slight increase in cloud water mixing ratio but a negligible effect on precipitation in the upwind region, whereas those with the change in heat source represents the distinctive convergence and its associated updraft in the downwind region but a decrease in liquid water, which may be attributable to the evaporation of cloud droplet by atmospheric heating induced by an increase in an anthropogenic heat. In spite of limitations in the observation-based analysis and one-day simulation, the current result could provide an evidence of the effect of urbanization on the light precipitation in the downwind region.

The Formation Mechanism Synthesizing of $SrTiO_3$Fine Powders by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법에 의한 $SrTiO_3$ 미분말 합성시 그 형성 과정에 관하여)

  • 허화범;이동주;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.2
    • /
    • pp.11-19
    • /
    • 1992
  • $SrTiO_3$powders were synthesized from the chloride and the nitrate aqueous solution by spray pyrolysis method using ultrasonic vibrator. The concentration of mother solution was prepared 0.05M and O.lM. The carrier gas flow rate was 0.5cm/sec and 1.5cm/sec, respectively. The formation processing was investigated in the 0.05M and 0.05cm/sec. The $SrTiO_3$powders could not be synthesized from chloride aqueous solution. The prepared powders from nitrate aqueous solution was SrTi03 with cubic structure and nearly sphere particle for all samples. Mean particle size was increased from $0.49{\mu}m$ to $0.67{\mu}m$ by changing the carrier gas flow rate from O.5cm/sec to 1.5cm/sec. Also, mean particle size increased from $0.49{\mu}m$to $0.55{\mu}m$by changing the concentration of mother solution from O.05M to O.1M. Atomizing droplet size was $14.3{\mu}m$. The shape of particles was very porous by evaporation of solvent at the initial step. But through the each step upwards, shape of particles was formed themselves into a nearly roundish.

  • PDF

Computational Fluid Dynamics(CFD) Simulation and in situ Experimental Validation for the Urea-Based Selective Non-Catalytic Reduction(SNCR) Process in a Municipal Incinerator (생활폐기물 소각장 2차 연소로에서 요소용액을 이용한 선택적무촉매환원 공정에 대한 전산유체역학 모사 및 현장 검증)

  • Kang, Tae-Ho;Nguyen, Thanh D.B.;Lim, Young-Il;Kim, Seong-Joon;Eom, Won-Hyeon;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.630-638
    • /
    • 2009
  • A computational fluid dynamics(CFD) model is developed and validated with on-site experiments for a urea-based SNCR(selective non-catalytic reduction) process to reduce the nitrogen oxides($NO_x$) in a municipal incinerator. The three-dimensional turbulent reacting flow CFD model having a seven global reaction mechanism under the condition of low CO concentration and 12% excess air and droplet evaporation is used for fluid dynamics simulation of the SNCR process installed in the incinerator. In this SNCR process, urea solution and atomizing air were injected into the secondary combustor, using one front nozzle and two side nozzles. The exit temperature($980^{\circ}C$) of simulation has the same value as in situ experiment one. The $NO_x$ reduction efficiencies of 57% and 59% are obtained from the experiment and CFD simulation, respectively at NSR=1.8(normalized stoichiometric ratio) for the equal flow rate ratio from the three nozzles. It is observed in the CFD simulations with varying the flowrate ratio of the three nozzles that the injection of a two times larger front nozzle flowrate than the side nozzle flowrate produces 8% higher $NO_x$ reduction efficiency than the injection of the equal ratio flowrate in each nozzle.

Basic Study of Spray-Behavior Characteristics of Emulsified Fuel (에멀젼연료의 분무거동특성에 관한 기초연구)

  • Yeom, Jeong Kuk;Yoon, Jeong Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.763-771
    • /
    • 2014
  • As a preliminary study on the spray behavior characteristics of emulsified fuel, the fuel properties (viscosity, surface tension, and density) and evaporation characteristics of a fuel droplet were investigated. The emulsified fuel was made by mixing diesel and $H_2O_2$. In addition, the macroscopic spray behavior characteristics such as the spray penetrations and spray angles of the emulsified and diesel fuels were compared. The stirring condition of the emulsified fuel was a 9:1 mixture of the diesel fuel and the surfactant span 80. The mixing ratios for the hydrogen peroxide were set at EF2, EF12, EF22, EF32, EF42, EF52, EF62, EF72, EF82, and EF92. The injection pressures were set at 400, 600, 800, and 1000 bar. We found that as the mixing ratio of the hydrogen peroxide was increased from EF2 to EF52, the viscosity of the emulsified fuel increased. However, afterward, the viscosity of the emulsified fuel gradually decreased and approached the viscosity value of the diesel fuel. Therefore, generally oil-in-water emulsions were used for the hydrogen peroxide mixing ratios up to 52 (EF52), and water-in-oil emulsions were used for the hydrogen peroxide mixing ratios above 52. Finally, the spray behavior characteristics (spray penetration and spray angle) of the emulsified fuel were found to be almost independent of the mixing ratio.

2-Dimensional Unsteady Modeling of Spray Flame Formed in a Laminar Counterflow Field - Effects of Equivalence Ratio and Fuel - (층류 대향류장에 형성된 분무화염의 2차원 비정상 모델링 -당량비 및 연료종에 관한 영향-)

  • Hwang, Seung-Min;Chung, Jin-Do;Seo, Byung-Min;Kim, Young-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.933-940
    • /
    • 2009
  • To evaluate characteristics in spray flame, laminar counterflow is investigated on the effects of equivalence ratio and fuel by a two-dimensional DNS (direct numerical simulation). For the gaseous phase, Eulerian mass, momentum, energy, and species conservation equations are solved. For the disperse phase, all individual droplets are calculated by the Lagrangian method without the parcel model. n-Decane ($C_{10}H_{22}$) and n-heptane ($C_7H_{16}$) is used as a liquid spray fuel, and a one-step global reaction is employed for the combustion reaction model. As equivalence ratio increases, the fuel ignites early and the high temperature region spreads wider. The peak value of temperature, however, tends to once increase and then decreases with increasing equivalence ratio. The decrease in the peak value of temperature for the higher equivalence ratio condition is caused by the cooling effect associated with droplet group combustion. Since the evaporation of n-heptane is early, the high temperature region spreads wider than ndecane, but the peak values of temperature for both n-heptane and n-decane is almost same.