• Title/Summary/Keyword: Droplet diameter distribution

Search Result 114, Processing Time 0.025 seconds

Size Distribution of Droplets Sprayed by an Orchard Sprayer (과수방제기 살포입자의 직경 분포특성)

  • 구영모;신범수;김상헌
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.431-440
    • /
    • 2001
  • Generated agri-chemical droplets by orchard sprayers are evaporated regenerated and transported along wind streams. The droplets are deposited to targets after changing their sizes, affecting the retention of droplets. An orchard sprayer, designed for spraying grapevines was studied on the spatial distribution of droplet size. The experimental variables were spray direction (0, 22.5, 45, 67.5 and 90˚), distance(2.5, 3.0 and 3.5 m) and fan speed (2,075 and 3,031 rpm). Droplet sizes were converted and analyzed from spray stains, sampled using water sensitive papers. The number median diameter (NMD) increased with an increase of the distance due to disappeared fine droplets (<50 ㎛): however, the volume median diameter (VMD) decreased due to shrunken large droplets (>100 ㎛). Fast fan speed delivered large droplets to 3.5 m, but the spatial distributions of NMD and VMD were not uniform. Slower fan speed decreased the possibility of evaporation and drift; therefore, plenty of droplets were maintained up to 3.0 m. The upward blasting distance was limited within 3 m, but the limit to the ground level was extended to 3.5 m. Concentrated wind and droplets to the ground level should be redistributed to upper canopy direction, leading more uniform deposits. High speed wind and system pressure should be avoided because of generating fine droplets, which would be disappeared and drifted away.

  • PDF

An Experimental Study on Angled Injection and Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.486-491
    • /
    • 2008
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomizer internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD(Sauter Mean Diameters) distribution by using PLLIF(Planar Liquid Laser Induced Fluorescence) technique. The objectives of this research are getting a droplet distribution and drop size measurement of each condition and compare with the other flows effect. As the result, This research have been showed the droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects and normalized distance from the injector exit length.(x/d, y/d)There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

ANALYSIS OF TRANSIENT TEMPERATURE DISTRIBUTION IN ROTATING ARC GMA ELDING BY CONSIDERING DROPLET DEFLECTION

  • Kim, Cheolhee;Na, Suck-Joo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.763-768
    • /
    • 2002
  • This paper presents a mathematical model predicting the temperature distribution in rotating GMA welding. The bead width increases with rotation frequency at the same rotation diameter because the molten droplets are deflected by centrifugal force. The numerical solution is obtained by solving the transient three-dimensional heat conduction equation considering the heat input from the welding arc, cathode heating and molten droplets. Generally in GMA welding the heat input may be assumed as a normally distributed source, but the droplet deflection causes some changes in the heat input distribution. To estimate the heat flux distribution due to the molten droplet, the contact point where the droplet is transferred on the weld pool surface is calculated from the flight trajectory of the droplets under the arc plasma velocity field obtained from the arc plasma analysis. The numerical analysis shows a tendency of broadened bead width and shallow penetration depth with the increase of rotating frequency. The simulation results are in good agreement with those obtained by the experiments under various welding conditions.

  • PDF

Analysis of Correclations between Flow Rate, Pressure and Average Size of Droplet with Hydraulic Diameter of Water Curtain Nozzle (수막설비용 노즐의 수력직경 변화에 따른 방사유량, 방사압 그리고 액적의 평균 크기 상관관계 분석)

  • Park, Jung Wook;Shin, Yeon Je;You, Woo Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.317-323
    • /
    • 2020
  • In this study, the correlations between flow rate, exhaust pressure, and droplet mean diameter with the shape factor of a water curtain nozzle were investigated. To analyze the flow coefficient and the distribution constant on the effects of the hydraulic diameter, five nozzles (D5W3, D5W6, D5W8, D4W6, and D7W6) were mocked up with a consideration of the internal diameter and width. The results showed that the flow coefficient increased in proportion to the constant 0.79 and 62.8 of the hydraulic diameters according to the diameter. As the nozzle width increased, the average droplet size decreased to the -0.235 exponential of the pressure. The average volume was reduced, in which the size distribution of the volume indeterminate decreased with increasing pressure for the same nozzle of the water-curtain. The distribution constants of droplet increased in proportion to the 0.258 exponential of the hydraulic diameter and 244.21. These results are expected to be useful to the design of pressure, flow meter, and average droplet size from a water curtain nozzle to predict the flow characteristics.

The Characteristics of Silica Powders Prepared by Spray Pyrolysis Applying Droplet Classification Apparatus (액적 분급 장치를 적용한 분무열분해 공정으로부터 합성된 실리카 분말의 특성)

  • Kang, Yun-Chan;Ju, Seo-Hee;Koo, Hye-Young;Kang, Hee-Sang;Park, Seung-Bin
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.633-638
    • /
    • 2006
  • Silica powders with spherical shape and narrow size distribution were prepared by large-scale ultrasonic spray pyrolysis applying the droplet classification apparatus. On the other hand, silica powders prepared by large-scale ultrasonic spray pyrolysis without droplet classification apparatus had broad size distribution. Droplet classification apparatus used in this paper applied the principles of cyclone and dispersion plate with small holes. The droplets formed from the ultrasonic spray generator applying the droplet classification apparatus had narrow size distribution. The droplets with fine and large sizes were eliminated by droplet classification apparatus. The optimum flow rate of the carrier gas and diameter of the hole of the dispersion plate were studied to reduce the size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis. The size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis at the optimum preparation conditions was 0.76.

Disintegration Process of the Rotating Fuel Injector (회전연료 분사시스템의 분열과정)

  • Jang, Seong-Ho;Lee, Dong-Hun;You, Gyung-Won;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.171-174
    • /
    • 2008
  • This paper presents disintegration process of the small rotational fuel injector. In order to understand disintegration precess, we measured droplet diameter, velocity and spray distribution by the PDPA(Phasse Doppler Particle Analyzer) system. Also spray was visualized by using Nd-Yag flash photography. From the test results, the liquid column emerging from the injection orifice is mainly controlled by the rotational speeds. Furthermore, droplet diameter(SMD) and spray distribution were strongly influenced by the diameter of the injection orifice.

  • PDF

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (아음속 수직분사제트에서 액적크기 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Hwang, Yong-Seok;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2007
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomize. internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD (Sauter Mean Diameters) distribution by using Planar Liquid Laser Induced Fluorescence technique. The objectives of this research are get a droplet distributions and drop size measurements of each condition and compare with the other flow effects. As the result, This research has been showned that droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects, and normalized distance from the injector exit length(x/d, y/d). There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

Analysis of Morphology and Viscoelastic Behavior of LCP/PET Blends by Repeated Extrusion (반복압출에 의한 LCP/PET 블렌드 조성에 따른 모폴로지 및 점탄성 거동 분석)

  • Choi, Yong Seok;Jeon, Han-Yong
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.475-479
    • /
    • 2015
  • Droplet distribution of LCP(Vectra 950) and PET blend by repeated extrusion was examined through morphology analysis. Repeated extrusion was respectively proceeded twice and three times with blending condition and droplet distribution of only once extrusion sample showed uniform shape. However, droplet size of twice and three times extrusion samples increased and it was confirmed that droplets were concentrated on the center of specimens. It is thought that this phenomena were due to the compatibility and viscoelastic behavior of LCP/PET blend. Finally, it is thought that fiber manufacturing of different diameter is possible from spinning of repeated extrusion LCP/PET blended chip under same spinning condition.

A Study of Interaction Effect from Spray Fan Formed by Impinging Jets (충돌분류에 의해 형성된 Spray fan의 간섭효과에 관한 연구)

  • Han, J.S.;Kim, S.J.;Moon, D.Y.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.9-15
    • /
    • 1999
  • The Analysis of spray characteristics for combined spray group are necessary to develop large rocket engine. In this study, basic effects of interaction from spray fan formed by impinging jets were investigated with respect to mass distribution, droplet velocities and diameter. Patternater and PDPA are used for experimental apparatus. Water was used as a test fluid When momentum ratio is 1, effect of interaction from collision of spray fan on mass distribution are small. Also, effect of interaction from collision of spray fan on droplet velocities and diameter are small. But, droplet diameter is smaller near collision point due to second collision. Therefor, for the same momentum ratio from spray fan formed by impinging jets, we may neglect effect of interaction on mass distribution, droplet velocities and diameter.

  • PDF

Spatial Distribution Characteristics of Small LRE-injector's Spray-droplet According to the Variation of Fuel-injection Pressure (소형 액체로켓엔진 인젝터 분무의 연료분사압력 변이에 따른 액적의 공간분포 특성)

  • Jung, Hun;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-8
    • /
    • 2008
  • Dual-mode Phase Doppler Anemometry (DPDA) was used to scrutinize the spatial distribution characteristics of spray emanating from a small Liquid-Rocket Engine (LRE) injector. Droplet size and velocity were measured according to the variation of injection pressure along the plane normal to the spray stream and then the spray characteristic parameters such as Arithmetic Mean Diameter (AMD), Sauter Mean Diameter (SMD), number density, span of drop size distribution, and volume flux were deduced for an investigation of spray breakup characteristics. As the injection pressure increases, the number density, span, and volume flux of spray droplets become higher, whereas the AMD gets smaller.