• Title/Summary/Keyword: Droplet breakup

Search Result 129, Processing Time 0.024 seconds

Spray characteristics of misaligned impinging injectors

  • Subedi, Bimal;Son, Min;Kim, Woojin;Choi, Jangsu;Koo, Jaye
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1257-1262
    • /
    • 2014
  • The variances of atomization characteristics with the misalignment of injectors defined as the fraction of skewness for various angles of impingement and pressure conditions were studied using the doublet impinging injectors with a like-on-like arrangement. Water was used as simulant and the spray characteristics along with the changes in the skewness were analyzed using the methods of spray image photography. Experiment was carried for the impinging nozzles of orifice diameter of 1.2 mm within Reynolds numbers ranging from $9{\times}10^3-4.5{\times}10^4$ and the fraction of skewness considered for the experiment ranges from 0.0 to 0.9 at ambient temperature condition. Flat sheet with a distinct rim produced perpendicular to the plane of impinging jets goes ondisappear and sheet appears comparatively shorterwith the increase in fraction of skewness resulting the atomization of fluid droplet very close to impingement point with decrease in breakup length and increase in spray angle up to certain extent. The maximum allowable skewness was found as the result. The skewness up to the certain extent can be considered as the parameter to control the atomization characteristics of simulant inside the combustion chamberproviding the high economic performance of fuel and time.

An Experimental Study on Diesel Spray Dynamics and Auto-Ignition Characteristics in the Rapid Compression Machine (RCM을 이용한 디젤 분무거동 및 자발화 특성에 관한 연구)

  • Kang, P.J.;Kim, H.M.;Kim, Y.M.;Kim, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.447-452
    • /
    • 2000
  • The low-emission and high-performance diesel combustion is an important issue in the combustion research community. In order to understand the detailed diesel flame field involving the complex Physical Processes, It Is quite desirable to study diesel spray dynamics, auto-ignition and spray flame propagation. Dynamics of fuel spray is a crucial element for air-fuel mixture formation flame stabilization and pollutant formation. In the present study, the diesel RCM (Rapid Compression Machine) and the Electric Control injection system have been designed and developed to investigate the effects of injection Pressure, injection timing, and intake air temperature on spray dynamics and diesel combustion processes. In terms of the macroscopic spray combustion characteristics it is observed that the fuel jet atomization and the droplet breakup processes become much faster by increasing the injection pressure and the spray angle. With increasing the cylinder pressure there is a tendency that the shape of spray pattern in the downstream region tends to be spherical due to the increase of air density and the corresponding drag force. Effects of intake temperature and injection pressure on auto-ignition is experimently analysed and discussed in detail.

  • PDF

Effect of Gas-liquid Ratio on Characterization of Two-Phase Spray Injected into a Cross-flow (횡단유동에 분사된 이유체 분무의 기체 액체비가 분무특성에 미치는 영향)

  • Cho, Woo-Jin;Lee, In-Chul;Lee, Bong-Su;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • The effect of two-phase spray injected into subsonic cross-flow was studied experimentally. External-mixing of two-phase spray from orifice nozzle with L/d of 3 was tested with various air-liquid ratio that ranges from 0 to 59.4%. Trajectory of spray and breakup phenomena were investigated by shadowgraph photography. Detailed spray structure was characterized in terms of SMD, droplet velocity, and volume flux using PDPA. Experimental results indicate that penetration length was increased and collision point of liquid jets approached to nozzle exit and distributions of mist-like spray were obtained by increasing air-liquid ratio.

Spray Breakup Characteristics of LRE Injector (액체로젯엔진 인젝터의 분무 분열특성)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Kim, Sung-Cho;Park, Jeong;Jang, Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.157-160
    • /
    • 2007
  • Spray characteristics of an injector employed in liquid rocket engine is investigated by Particle Image Velocimetry and Dual-mode Phase Doppler Anemometry measurements. Instantaneous plane images captured by PIV technique are examined in order to judge a pass-fail criteria of spray injection performance. DPDA technique is also applied in order to measure the velocity and diameter of spray droplets. The eternal objective of this study is to evaluate an injector performance which may be utilized for the design of brand-new ones through the clear understanding of spray characteristics.

  • PDF

Concave surface curvature effect on heat transfer from a turbulent round impinging jet (오목표면곡률이 난류원형충돌제트의 열전달에 미치는영향)

  • Im, Gyeong-Bin;Lee, Dae-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.691-699
    • /
    • 1997
  • The effects of concave hemispherical surface curvature on the local heat transfer from a turbulent round impinging jet were experimentally investigated. The liquid crystal transient method was used for these measurements. This method, which is a variation on the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystals for the measurement of the surface temperature. The Reynolds number ranges from Re=11,000 to 50,000, the nozzle-to- surface distance from L/d=2 to 10, and the surface curvature from D/d=6 to 12.The present results are also compared to those for the flat plate case. In the experiment, the local Nusselt numbers tend to increase in all regions with an increasing surface curvature. The maximum Nusselt number for all Reynolds numbers occurred at L/d .ident. 6 and a second maximum in the Nusselt number occurred at R/d .ident. 2 for both Re=23,000 and Re=50,000 in the case of L/d=2 and for Re=50,000 only in the case of L/d=4. Meanwhile, as the surface curvature increases, the value of the secondary maximum Nusselt number decreases. All the other cases exhibit monotonically decreasing values of the Nusselt number along the curved surface. The stagnation point Nusselt numbers are well correlated with Re, L/d, and D/d.

A Numerical Study on Various Energy and Environmental System (II) (에너지${\cdot}$환경 제반 시스템에 관한 수치해석적 연구(II))

  • Jang D. S.;Park B. S.;Kim B. S.;Lee E. J.;Song W. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.58-67
    • /
    • 1996
  • This paper describes some computational results of various energy and environmental systems using Patankar's SIMPLE method. The specific topics handled in this study are jet bubbling reactor for flue gas desulfurization, cyclone-type afterburner for incineration, 200m tall stack for 500 MW electric power generation, double skin and heat storage systems of building energy saving for the utilization of solar heating, finally turbulent combustion systems with liquid droplet or pulverized coal particle. A control-volume based finite-difference method with the power-law scheme is employed for discretization. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, that is, SIMPLEC. Reynolds stresses are closed using the standard $k-{\varepsilon}$ and RNG $k-{\varepsilon}$ models. Two-phase turbulent combustion of liquid drop or pulverized coal particle is modeled using locally-homogeneous, gas-phase, eddy breakup model. However simple approximate models are incorporated for the modeling of the second phase slip and retardation of ignition without consideration of any detailed particle behavior. Some important results are presented and discussed in a brief note. Especially, in order to make uniform exit flow for the jet bubbling reactor, a well-designed structure of distributor is needed. Further, the aspect ratio in the double skin system appears to be one of important factors to give rise to the visible change of the induced air flow rate. The computational tool employed in this study, in general, appears as a viable method for the design of various engineering system of interest.

  • PDF

Numerical Study of the Post Combustion Chamber of Grate Type Incinerator in Daejon 4th Industrial Complex (대전 4공단 소각로 후연소로 모델 연구)

  • Kim Hey-Suk;Shin Mi-Soo;Jang Dong-Soon;Park Byung-Soo;Um Tae-In
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.133-138
    • /
    • 2002
  • A 3-D axisymmetric computer program is developed to predict the NO behavior in SNCR system for the stoker incinerator with the waste treatment capacity, 200ton/day. To this end a turbulent reacting flow field calculation is made using proper assumption and empiricism. The stoker bed is assumed to be a homogeneous waste-volatilized gaseous state. The initial composition or reactants are assumed based on the data of the ultimate analysis. Turbulent is resolved by k-e model and turbulent reaction is handled by eddy-breakup model harmonized with empirical chemistry data for gaseous combustion, NO and urea reaction. The liquid droplet is traced by Lagrangian method incorporated by aerodynamic drag, Coriolis and crntrifugal forces. Radiation is treated by sensible heat loss model. Calculation results are in good agreement with experimental data at the outlet of post combustion chamber in Daejon 4th industrial complex. The flue gas shows the temperature range of $900\sim1000^{\circ}C$, velocity of 5m/s and NO concentration of 140ppm at the exit while the measured temperature, flue gas velocity and NO concentration are $967^{\circ}C$, $3\sim4m/s$ and $100\sim200ppm$respectively. Using the developed computer program a parametric study has been made with the variation of heat content of waste, castable length and SNCR variables for the determination of proper injector location. In general, the calculated results are consistent and physically acceptable.

  • PDF

Drop formation of Carbopol dispersions displaying yield stress, shear thinning and elastic properties in a flow-focusing microfluidic channel

  • Hong, Joung-Sook;Cooper-White, Justin
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.269-280
    • /
    • 2009
  • The drop formation dynamics of a shear thinning, elastic, yield stress ($\tau_o$) fluid (Carbopol 980 (poly(acrylic acid)) dispersions) in silicone oil has been investigated in a flow-focusing microfluidic channel. The rheological character of each solution investigated varied from Netwonian-like through to highly non-Newtonian and was varied by changing the degree of neutralization along the poly (acrylic acid) backbone. We have observed that the drop size of these non-Newtonian fluids (regardless of the degree of neutralisation) showed bimodal behaviour. At first we observed increases in drop size with increasing viscosity ratio (viscosity ratio=viscosity of dispersed phase (DP)/viscosity of continuous phase (CP)) at low flowrates of the continuous phases, and thereafter, decreasing drop sizes as the flow rate of the CP increases past a critical value. Only at the onset of pinching and during the high extensional deformation during pinch-off of a drop are any differences in the non-Newtonian characteristics of these fluids, that is extents of shear thinning, elasticity and yield stress ($\tau_o$), apparent. Changes in these break-off dynamics resulted in the observed differences in the number and size distribution of secondary drops during pinch-off for both fluid classes, Newtonian-like and non-Newtonian fluids. In the case of the Newtonian-like drops, a secondary drop was generated by the onset of necking and breakup at both ends of the filament, akin to end-pinching behavior. This pinch-off behavior was observed to be unaffected by changes in viscosity ratio, over the range explored. Meanwhile, in the case of the non-Newtonian solutions, discrete differences in behaviour were observed, believed to be attributable to each of the non-Newtonian properties of shear thinning, elasticity and yield stress. The presence of a yield stress ($\tau_o$), when coupled with slow flow rates or low viscosities of the CP, reduced the drop size compared to the Newtonian-like Carbopol dispersions of much lower viscosity. The presence of shear thinning resulted in a rapid necking event post onset, a decrease in primary droplet size and, in some cases, an increase in the rate of drop production. The presence of elasticity during the extensional flow imposed by the necking event allowed for the extended maintenance of the filament, as observed previously for dilute solutions of linear polymers during drop break-up.

Effect of Nozzle Shape and Injection Pressure on Performance of Hybrid Nozzle (노즐 형상 및 분사 압력이 하이브리드 노즐 성능에 미치는 영향 연구)

  • Ro, Kyoung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.74-79
    • /
    • 2017
  • The fire extinguishing performance of hybrid nozzle systems is improved by injecting an extinguishing agent concentrically into the target site and, in this study, water mist is used as a water curtain to confine the droplets of the agent. In this study, we numerically investigated the effect of the foundation angle and injection pressure on the performance of a hybrid nozzle by evaluating the mean radius of the volume fractions of the agent and water mists. An experiment involving a water mist nozzle was carried out to validate the numerical method and then the droplet behaviors, e.g., stochastic collision, coalescence and breakup, were calculated with 2-way interaction Discrete Particle Modeling (DPM) in the steady state for the hybrid nozzle system. The mean radius of the water mists increased by about 40 %, whereas that of the agent decreased by about 21 %, when the injection pressure was increased from 30 bar to 60 bar. In addition, the mean radius of the agent increased by about 24 % as the foundation angle of the hybrid nozzle head increased from $30^{\circ}$ to $60^{\circ}$. As a result, it can be inferred that the injection angle and pressure are important factors for hybrid water mist designs.