• Title/Summary/Keyword: Droplet breakup

검색결과 129건 처리시간 0.025초

표면 충돌 액적의 분열에 관한 실험적 연구 (An Experimental Study of Breakup of Impinging Droplets on a Hot Surface)

  • 고영성;정석호
    • 한국자동차공학회논문집
    • /
    • 제2권5호
    • /
    • pp.85-92
    • /
    • 1994
  • Characteristics of breakup of a liquid droplet impinging on a hot surface has been investigated experimentally by using decane fuel. Factors influencing droplet breakup are surface temperature, impinging velocity, droplet diameter and incident angle. Droplets impinging on a hot surface begins to breakup at $220{\sim}235^{\circ}C$. This temperature varies with impinging Velocity, droplet diameter and incident angle. For wall temperature of $220{\sim}245^{\circ}C$ and above $270^{\circ}C$, breakup probability increases as impinging velocity increases showing S shape curve. For $245{\sim}265^{\circ}C$, a local minimum heat transfer rate occurs. In this temperature range, breakup probability shows nonmonotonous behavior as functions of impinging velocity. As droplet diameter decreases, impinging velocity required for droplet breakup increases. An optimum impinging angle for droplet breakup exists which are found to be about $75^{\circ}$.

  • PDF

액적의 변형 및 분열의 정확한 예측을 위한 공기역학적으로 진보된 APTAB 모델 (Aerodynamically Progressed Taylor Analogy Breakup (APTAB) Model for Accurate Prediction of Spray Droplet Deformation and Breakup)

  • 박종훈;황상순;윤영빈
    • 한국분무공학회지
    • /
    • 제5권2호
    • /
    • pp.53-60
    • /
    • 2000
  • An aerodynamically progressed model, which is called APTAB model. has been proposed for more accurate prediction of the deformation and breakup of a spray. Especially, the effects of the droplet deformation on the droplet aerodynamic external force are considered in this model, which was neglected in TAB model. It is found that the predicted droplet deformation using APTAB model shows better agreement with experimental data than those of other models for the droplets in both bag-type and shear-type breakup regimes. A new breakup criterion has been proposed to predict more reasonable breakup quantities, such as breakup deformation length, time and so on; i.e., it is defined that the breakup occurs when the internal liquid phase pressure of the deformed droplet at the equator is greater than that of the pole. The proposed breakup criterion shows more physical relationship between the degree of droplet deformation at breakup and the corresponding breakup Weber number as compared with the results with TAB and DDB models. Therefore, it provides better predictions of the experimental data than TAB and DDB models for the droplet deformation and time in both bag-type and shear-type breakup regimes.

  • PDF

연료 물성에 따른 횡단 유동장 내의 액적 분열 특성에 관한 실험적 연구 (Experimental Investigation on the Breakup Characteristics of Various Fuels in air Cross-flow Condition)

  • 김사엽;이근희;이창식
    • 한국분무공학회지
    • /
    • 제12권3호
    • /
    • pp.160-165
    • /
    • 2007
  • In this study, the breakup characteristics of mono disperse droplets were studied with various fuels, ethanol, diesel fuel, biodiesel fuel extracted from soybean oil, and pure water. In order to investigate the droplet behavior in air cross-flow conditions, the experimental equipment was composed of a droplet generator with an air nozzle, and a high-magnification photo detecting system. Droplets produced by the droplet generator were injected into the air stream flowing normal to a direction of liquid drop jet. Digital images of the droplet behavior in air flow field were recorded by controlling the air flow rate. From the inspections, droplet breakup mechanism is primarily classified into the two kinds of stage, first breakup stage and second breakup stage. At the first breakup stage, droplet deformation rate seems to be affected by the force induced by the surface tension and the viscosity. On the other hand, at the second breakup stage, droplet is broken up mainly induced by the surface tension, so the breakup transition can be divided by the regular Weber number.

  • PDF

디젤분무의 모사를 위한 혼합 모델의 개발 (Development of Hybrid Model for Simulating of Diesel Spary Dynamics)

  • 김정일;노수영
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.8-19
    • /
    • 2001
  • A number of atomization and droplet breakup models have been developed and used to predict the diesel spray characteristic. Most of these models could not provide reasonable computational result of the diesel spray characteristic because they have only considered the primary breakup. A hybrid model is, therefore, required to develop by considering the primary and secondary breakup of liquid jet. according to this approach, wave breakup(WB) model was used compute the primary breakup of the liquid jet and droplet deformation and breakup(DDB) model was used for the secondary breakup of droplet. Development of hybrid model by using KIVA-II code was performed by comparing with the experimental data of spray tip penetration and SMD from the literature. A hybrid model developed in this study could provide the good agreement with the experimental data of spray tip penetration. The prediction results of SMD were in good agreement between 0.5 and 1.0 ms after the start of injection. Numerical results obtained by the present hybrid model have the good agreement with the experimental data with the breakup time constant in WB model of 30, and DDB model constant Ck of 1.0 when the droplet becomes less than 95% of maximum droplet diameter injected.

  • PDF

액적분열을 고려한 미세물분무 화재제어에 대한 수치해석 (Numerical Study on Fire Suppression using a Water-mist System Considering Droplet Breakup)

  • 고승우;고권현;유홍선
    • 한국철도학회논문집
    • /
    • 제9권6호
    • /
    • pp.625-629
    • /
    • 2006
  • This paper describes the effect of the droplet breakup process on fire suppression using a water-mist system, which is considered as a alternative to sprinkler fire suppression system. In the evolution of the water-mist, the droplet breakup process is an important phenomenon because it may significantly affect the droplet evaporation rate. The Fire Dynamics Simulator (FDS, Ver. 4.0) code, which is widely used for the simulation of fire dynamics, is used for the present simulation, and it is modified to consider the droplet breakup phenomena. The Prediction by the modified code shows good agreement with experimental data for the temperature. The original FDS predicts higher temperature about $30^{\circ}C$ than experimental data. From the results, it is concluded that the droplet breakup phenomena must be considered for more precise simulation of fire suppression process.

고온벽면 충돌에 의한 미립화 (ATOMIZATION OF LIQUID DROPLET BY IMPINGEMENT ONTO THE HOT SURFACE)

  • 전인곤;이준백;전흥신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.738-744
    • /
    • 2000
  • The breakup behaviors of impinging droplet on a hot surface are studied experimentally. The droplets are produced by the dripping method and the breakup behaviors of liquid droplet are recorded by photographs. Experimental conditions are, droplet diameter di : 2.5, 3.2 [mm], weber number : $30{\sim}140$, surface temperature : $28^{\circ}C(room\;temperature){\sim}450^{\circ}C$. Water is used to liquid. As weber number of droplet increases, a liquid sheet, which is formed after the impingement on a hot surface, is disintergrated by the dynamical effect. But at low weber number, it has effected by thermodynamical effect. The breakup behaviors of droplet are divided into three patterns with weber number and surface temperature, non-disintegration, transition and disintegration region. Further, these boundary values are affected by the hot surface temperature and weber number. SMD of breakup droplets are calculated in according to surface temperatures and weber number. The minium SMD of breakup droplets are observed at weber number 65.49, temperature $250^{\circ}C$ and weber number 99.08, temperature $350^{\circ}C$.

  • PDF

Experimental Study of Time-Dependent Evolution of Water Droplet Breakup in High-Speed Air Flows

  • Park, Gisu;Yeom, Geum-Su;Hong, Yun Ky;Moon, Kwan Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.38-47
    • /
    • 2017
  • This paper presents experimental data on water droplet breakup in high-speed air flows. Exact-time-dependent evolution of wave and droplet interaction as well as breakup processes were optically visualized using a shadowgraph technique. Droplet experiments were conducted in a shock tube. Five flow conditions were used with an incident shock wave Mach number from 1.40 to 2.19 with Weber number based on the droplet initial diameter from 2300 to 38000, respectively. This corresponds to post-shock flow speeds varying from subsonic to supersonic. The considered droplet diameters were 2.0 mm to 3.6 mm. Some interesting wave patterns in the near wake were found. The present data shows that with an increase in the Weber number the droplet acceleration coefficient decreases and the level of decrease was weaker for the case of higher Mach numbers. This state of affair is different to the existing data in literature. Possible reasons are discussed.

기체 유동에 수직 분사된 액체의 분해에 대한 수치적 해석 (Numerical Analysis for Breakup of Liquid Jet in Crossflow)

  • 박순일;장근식;문윤완;사종엽
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1629-1633
    • /
    • 2004
  • Liquid is commonly introduced as transversal jets in venturi scrubber which is one of the gas cleaning equipments. The jet dynamics such as penetration and breakup is of fundamental importance to the dust-collection efficiency. We have developed a model that can numerically simulate the breakup of the liquid jet in crossflow. This simulation consists of models on liquid column, jet surface breakup, column fracture and secondary droplet breakup. These models have been embedded in the KIVA3-V code. We have calculated such parameters as the jet penetration, jet trajectory, droplet size, velocity field and the volume flux distribution. The results are compared with the experimental data in this paper.

  • PDF

Droplet size prediction model based on the upper limit log-normal distribution function in venturi scrubber

  • Lee, Sang Won;No, Hee Cheon
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1261-1271
    • /
    • 2019
  • Droplet size and distribution are important parameters determining venturi scrubber performance. In this paper, we proposed physical models for a maximum stable droplet size prediction and upper limit log-normal (ULLN) distribution parameters. For the proposed maximum stable droplet size prediction model, a Eulerian-Lagrangian framework and a Reitz-Diwakar breakup model are solved simultaneously using CFD calculations to reflect the effect of multistage breakup and droplet acceleration. Then, two ULLN distribution parameters are suggested through best fitting the previously published experimental data. Results show that the proposed approach provides better predictions of maximum stable droplet diameter and Sauter mean diameter compared to existing simple empirical correlations including Boll, Nukiyama and Tanasawa. For more practical purpose, we developed the simple, one dimensional (1-D) calculation of Sauter mean diameter.

독립된 두 레이저를 이용한 n-Dodecane 에멀전 단일 액적의 분열 및 점화 현상의 관찰 (Breakup and Ignition Observation of n-Dodecane Emulsion Single Droplet using Two Pulse Lasers)

  • 장규민;정용진;이민정;김남일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.213-214
    • /
    • 2015
  • Breakup and ignition of single droplet were experimentally investigated using two independent Nd-YAG lasers. The emulsified fuel was made from n-dodecane and water while varying the relative volumetric fraction. As a result of visualization, breakup and ignition behaviors were dependent on the fraction. Luminosity from the secondary droplets increased as the water fraction decreased. Ignition did not occur below 80% of the n-dodecane fraction.

  • PDF