• Title/Summary/Keyword: Droplet Model

Search Result 340, Processing Time 0.019 seconds

The Effects of Nonequilibrium Condensation on Shock/Boundary Layer Interaction

  • Kim, Heuy-Dong;Lee, Kwon-Hee;Toshiaki. Setoguchi
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.788-795
    • /
    • 2001
  • The effects of nonequilibrium condensation on the shock boundary layer interaction over a transonic bump model were investigated experimentally and numerically. An experiment was conducted using a supersonic indraft wind tunnel. A droplet growth equation was incorporated into two-dimensional Navier-Stokes equation systems. Computations were carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. Computation compared with the experimental results. Nonequilibirum condensation suppressed the boundary layer separation and the pressure fluctuations due to the shock boundary layer interaction. Especially the nonequilbrium condensation was helpful to suppress the high frequency components of the pressure fluctuations.

  • PDF

A Study on the Dispersion of Fuel Particles in the Homogeneous Turbulent Flow Field (균일 난류 유동장내에서 연료입자의 퍼짐에 관한 연구)

  • 김덕줄;최연우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1330-1337
    • /
    • 1994
  • This study is to predict the lateral dispersion of the particles with time in a vertical pipe. Particle is released downward and located in the center of a pipe through which stationary, homogeneous turbulent air is flowing. We assume that gas turbulence velocities have a Gaussian probability density distribution and the presence of particle is not to alter turbulent structures. Particle trajectory is computed by numerically integrating the particle Lagrangian equation of motion, with a random sampling to determine the fluctuating air velocity experienced by each particle, which considered inertia effect and crossing-trajectories effect. The result shows characterestics of particle dispersion according to flow field condition and droplet size by using the parameters and scales, which expressed characterestics of flow field and particle. Predictions agree reasonably with experimental data.

Effects of injector on the A/F variations during acceleration and deceleration (Injector에 따른 가.감속시 공연비 변동에 관하여)

  • 이종수;조석구
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.67-72
    • /
    • 1993
  • Wall wetting phenomenon in the intake port of an MPI engine was investigated with different kinds of injectors by an A/F step response test and analysis was done based on the simple wall wetting model to find out a certain correlation between wall wetting and A/F variations. It was found that (1) At fully warmed condition of 90.deg.C water temperature, around 40-60% of injected fuel was wall wetted, (2) At cold condition of 45.deg.C Water temperature, around 68-80% of injected fuel was wall wetted, and (3) A/F variations during acceleration and deceleration were influenced by the wetting area, the fuel droplet size, and the amount of wall wetting fuel.

  • PDF

Numerical Analysis of Fusible Filler Behavior for Self-Interconnection Process (자기 접속 프로세스에 대한 볼륨 입자 거동에 대한 수치해석 연구)

  • Gwon, Hyeok-Rok;Lee, Jeong-Hui;Kim, Jong-Min;Lee, Seong-Hyeok
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.178-180
    • /
    • 2006
  • The present article aims to develop a numerical method for numerical analysis of fusible filler behavior for self-interconnection process. The CIP(Cubic Interpolated Propagation) method is used for determination of interfaces and the CSF(Continuum Surface Force) model is adopted for evaluation of curvature. To validate these models, first, the present study performs the numerical simulation for a droplet formation and it simulates the interactions among fusible fillers inside resin under the operating condition. As a result, similar tendency is found compared to the experimental observation. This study would be a first step towards finding the optimum condition for self-interconnection process.

  • PDF

The Effect of Nonequilibrium Condensation on Shock/Boundary Layer Interaction (비평형응축이 충격파와 경계층의 간섭에 미치는 영향)

  • Kim, H.D.;Lee, K.H.;Setoguchi, T.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.544-549
    • /
    • 2000
  • The effects of nonequilibrium condensation on the shock boundary layer interaction over a transonic bump model were investigated experimentally and numerically. An experiment was conducted using a supersonic indraft wind tunnel. A droplet growth equation was incorporated into two-dimensional Navier-Stokes equation systems. Computations were carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. Computations compared with the experimental results. Nonequilibirum condensation suppressed the boundary layer separation and the pressure fluctuations due to the shock boundary layer interaction. Especially the nonequilibrium condensation was helpful to suppress the high frequency components of the pressure fluctuations.

  • PDF

DEVELOPMENT OF THE SPACE CODE FOR NUCLEAR POWER PLANTS

  • Ha, Sang-Jun;Park, Chan-Eok;Kim, Kyung-Doo;Ban, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.45-62
    • /
    • 2011
  • The Korean nuclear industry is developing a thermal-hydraulic analysis code for safety analysis of pressurized water reactors (PWRs). The new code is called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE). The SPACE code adopts advanced physical modeling of two-phase flows, mainly two-fluid three-field models which comprise gas, continuous liquid, and droplet fields and has the capability to simulate 3D effects by the use of structured and/or nonstructured meshes. The programming language for the SPACE code is C++ for object-oriented code architecture. The SPACE code will replace outdated vendor supplied codes and will be used for the safety analysis of operating PWRs and the design of advanced reactors. This paper describes the overall features of the SPACE code and shows the code assessment results for several conceptual and separate effect test problems.

A COMPARATIVE STUDY OF LATTICE BOLTZMANN AND VOLUME OF FLUID METHOD FOR TWO-DIMENSIONAL MULTIPHASE FLOWS

  • Ryu, Seung-Yeob;Ko, Sung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.623-638
    • /
    • 2012
  • The volume of fluid (VOF) model of FLUENT and the lattice Boltzmann method (LBM) are used to simulate two-phase flows. Both methods are validated for static and dynamic bubble test cases and then compared to experimental results. The VOF method does not reduce the spurious currents of the static droplet test and does not satisfy the Laplace law for small droplets at the acceptable level, as compared with the LBM. For single bubble flows, simulations are executed for various Eotvos numbers, Morton numbers and Reynolds numbers, and the results of both methods agree well with the experiments in the case of low Eotvos numbers. For high Eotvos numbers, the VOF results deviated from the experiments. For multiple bubbles, the bubble flow characteristics are related by the wake of the leading bubble. The coaxial and oblique coalescence of the bubbles are simulated successfully and the subsequent results are presented. In conclusion, the LBM performs better than the VOF method.

A Study on Reducing Conduction Losses for High Speed Welding of Thin Plates (박판 고속 용접전원의 도전손실 저감에 관한 연구)

  • Bae, Jong-Moon;Kim, Joon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.166-171
    • /
    • 2002
  • We are in transitional period of welding technique, which has changed from the stage of quantity and quality to the stage of future technique, imported and introduced from many advanced countries. Therefore, many researches and studies for development on high speeding and making welding machines with high effectiveness has been doing vigorously. In this dissertation, I have studied on a pulsed MAG welding machine, with which welding of thin plates may perform high speeding and effecting. First, I produced a phase shifted full bridge DC-DC convert, which is the type of reduced conduction loss and the power supply for welding machine. And then, I found out an output waveform control algorithm about one pulsed one droplet and short waveform control for thin plates with high speed by deriving the circuit model utilizing the circuit averaged method for full bridge converter.

  • PDF

Development of a Fission Product Transport Module Predicting the Behavior of Radiological Materials during Severe Accidents in a Nuclear Power Plant

  • Kang, Hyung Seok;Rhee, Bo Wook;Kim, Dong Ha
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • Background: Korea Atomic Energy Research Institute is developing a fission product transport module for predicting the behavior of radioactive materials in the primary cooling system of a nuclear power plant as a separate module, which will be connected to a severe accident analysis code, Core Meltdown Progression Accident Simulation Software (COMPASS). Materials and Methods: This fission product transport (COMPASS-FP) module consists of a fission product release model, an aerosol generation model, and an aerosol transport model. In the fission product release model there are three submodels based on empirical correlations, and they are used to simulate the fission product gases release from the reactor core. In the aerosol generation model, the mass conservation law and Raoult's law are applied to the mixture of vapors and droplets of the fission products in a specified control volume to find the generation of the aerosol droplet. In the aerosol transport model, empirical correlations available from the open literature are used to simulate the aerosol removal processes owing to the gravitational settling, inertia impaction, diffusiophoresis, and thermophoresis. Results and Discussion: The COMPASS-FP module was validated against Aerosol Behavior Code Validation and Evaluation (ABCOVE-5) test performed by Hanford Engineering Development Laboratory for comparing the prediction and test data. The comparison results assuming a non-spherical aerosol shape for the suspended aerosol mass concentration showed a good agreement with an error range of about ${\pm}6%$. Conclusion: It was found that the COMPASS-FP module produced the reasonable results of the fission product gases release, the aerosol generation, and the gravitational settling in the aerosol removal processes for ABCOVE-5. However, more validation for other aerosol removal models needs to be performed.

Fundamental Study on the Chemical Ignition Delay Time of Diesel Surrogate Components (모사 디젤 화학반응 메커니즘의 각 성분이 화학적 점화 지연 시간에 미치는 영향에 관한 기초 연구)

  • Kim, Gyujin;Lee, Sangyul;Min, Kyoungdoug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.74-81
    • /
    • 2013
  • Due to its accuracy and efficiency, reduced kinetic mechanism of diesel surrogate is widely used as fuel model when applying 3-D diesel engine simulation. But for the well-developed prediction of diesel surrogate reduced kinetic mechanism, it is important to know some meaningful factors which affect to ignition delay time. Meanwhile, ignition delay time consists of two parts. One is the chemical ignition delay time related with the chemical reaction, and the other is the physical ignition delay time which is affected by physical behavior of the fuel droplet. Especially for chemical ignition delay time, chemical properties of each fuel were studied for a long time, but researches on their mixtures have not been done widely. So it is necessary to understand the chemical characteristics of their mixtures for more precise and detailed modeling of surrogate diesel oil. And it shows same ignition trend of paraffin mixture with those of single component, and shorter ignition delay at low/high initial temperature when mixing paraffin and toluene.