• Title/Summary/Keyword: Droplet Breakup

Search Result 129, Processing Time 0.028 seconds

Spray characteristics of swirl sprays introduced into the strongly convective flow (수직 간섭된 램공기 대류에 의한 스월 분무의 미립화 촉진에 관한 연구)

  • Lee Sang-Seung;Yoon Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.395-406
    • /
    • 2005
  • Important characteristics of swirl sprays intersected by a strongly convective gaseous cross flows were experimentally investigated. The breakup processes due to different Weber and Reynolds numbers of liquid and gas streams were visually examined with quantitative measurements of breakup lengths, penetration heights, and droplet sizes. Snapshot images and spray data evidenced that, at lower jet Reynolds number the breakup processes portrays the atomization profiles similar to typical column breakup of single orifice jet. At higher jet Reynolds numbers, disintegration of jet stream is significantly expedited by strong momentum transported from strongly convective gaseous stream. The breakup length and penetration height decreased as the convective flow increase. From the bottom the wall up, the SMD measured the centerline first increases and then decreases before again increasing.

  • PDF

LES on breakup and atomization of a liquid jet into cross turbulent flow in a rectangular duct (사각 덕트내 난류 횡단류 유동장에 분사되는 액체 제트의 분열과 미립화에 관한 LES 해석)

  • Yoo, Young-Lin;Han, Doo-Hee;Sung, Hong-Gye;Jeon, Hyuk-Soo;Park, Chul-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.290-297
    • /
    • 2016
  • A two-phase Large Eddy Simulation(LES) has been conducted to investigate breakup and atomization of a liquid jet in a cross turbulent flow in a rectangular duct. Gas-droplet two-phase flow was solved by a coupled Eulerian-Lagrangian method which tracks every individual particles. Effects of liquid breakup models, sub-grid scale models, and a order of spatial discretization was investigated. The penetration depth in cross flow was comparable with experimental data by varying breakup model and LES scheme. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

Evaluation of Droplet Breakup Models and Application to the Diesel Engine Combustion Analysis (분무 분열 모델의 평가 및 디젤 엔진 연소 해석에의 적용)

  • Park, Wonah;Lee, Hyowon;Min, Kyoungdoug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.86-91
    • /
    • 2013
  • It is important to understand the fuel injection characteristics, particularly the atomization, penetration, and breakup, for reducing the emissions in Diesel engines because those characteristics are related to the formation of the emissions. 3-dimensional CFD code can provide a fundamental understanding of those characteristics. In this study, two different breakup models (the Reitz-Diwakar model and the Kelvin-Helmholts Rayleigh Taylor model) were validated with the experimental data in a constant volume vessel. Then, the effect of the breakup model on the characteristics of the engine combustion and emission was studied.

Stochastic Model Comparison for the Breakup and Atomization of a Liquid Jet using LES (LES 해석에서 액체제트의 분열에 대한 확률론적 분열 모델링 비교)

  • Yoo, YoungLin;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.447-454
    • /
    • 2017
  • A three-dimensional two-phase large eddy simulation(LES) has been conducted to investigate the breakup and atomization of liquid jets such as a diesel jet in parallel flow and water jet in cross flow. Gas-liquid two-phase flow was solved by a combined model of Eulerian for gas flow and Lagrangian for a liquid jet. Two stochastic breakup models were implemented to simulate the liquid column and droplet breakup process. The penetration depth and SMD(Sauter Mean Diameter) were analyzed, which was comparable with the experimental data.

Two-Dimensional Distribution of Spray Droplets Emanating from an Injector of Liquid-Propellant Thruster (액체추진제 추력기 인젝터 분무액적의 2차원 공간분포)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Kim, Sung-Cho;Park, Jeong;Jang, Ki-Won;Su, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.135-138
    • /
    • 2007
  • Two-dimensional distribution characteristics on the spray droplets emanating from an injector employed in a liquid-propellant thruster are investigated through dual-mode phase Doppler anemometry (DPDA). Spray-breakup characteristic parameters such as spray droplet velocity, turbulent intensity, Sauter mean diameter (SMD), number density, and volumetric flux are quantified to scrutinize the macroscopic behavior of injector-spray breakup. The present study will be able to contribute to the comprehension for performance features of the thruster in current use and to the design engineering of a brand-new thruster as well.

  • PDF

An Experimental Study on the Spray Structure of a Gasoline Engine Injector (가솔린 기관용 인젝터의 분무 구조에 관한 실험적 연구)

  • Cho, B.O.;Lee, C.S.;Im, K.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.118-130
    • /
    • 1995
  • Fuel spray in a gasoline engine is a significant factor for the decision of engine power, pollutant emission and the design of intake manifold system. Three kinds of fuel which has other physical properties are chosen in this study, and it is observed using an image processing method that the mechanism and structure of free fuel spray with a throttle type gasoline injector, and the detailed characteristics of droplet size and velocity distributions are obtained by macro and micro-scopic measuring method respectively. It is verified that the initial breakup behaviors are depended on We like the result of Reitz's study, and also observed that the spray of octane and solvent with Re of 210~330 and 270~330 respectively are better than ethanol which has relatively high density and viscosity.

  • PDF

Numerical Simulation for Atomization of Liquid Jet in Venturi Scrubber (벤츄리 스크러버 내의 액체 분사 미립화에 대한 수치적 해석)

  • Pak S. I.;Chang K. S.;Moon Y. W.;Sah J. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.37-41
    • /
    • 2004
  • Liquid injection in a Venturi Scrubber creates great effect on the dust-collection efficiency and operation cost of venturi scrubbers. We have developed a model that can numerically simulate atomization of the liquid jet in the Venturi Scrubber. This simulation consists of models on liquid column, jet surface breakup, column fracture and secondary droplet breakup. These models have been embedded in the KIVA3-V code. We have calculated such parameters as the jet penetration, jet trajectory, droplet size, velocity field and the volume flux distribution. The results are compared with the experimental data in this paper.

  • PDF