• Title/Summary/Keyword: Drop transfer

Search Result 864, Processing Time 0.027 seconds

An Experimental Study on the Performance of a Cross-Flow-Type, Indirect Evaporative Cooler Made of Paper/Plastic Film (종이와 플라스틱 필름의 이종 재질로 구성된 직교류형 간접증발소자의 성능에 대한 실험적 연구)

  • Kwon, Mi-Hye;Go, Min-Geon;Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.475-483
    • /
    • 2015
  • In Korea, a typically hot and humid summer means that air-conditioners consume a large quantity of electricity; accordingly, the simultaneous usage of an indirect evaporative cooler may reduce the sensible-heat level and save the amount of electricity that is consumed. In this study, the heat-transfer and pressure-drop characteristics of an indirect evaporative cooler made of paper/plastic film were investigated under both dry and wet conditions; for the purpose of comparison, an indirect evaporative cooler made of plastic film was also tested. Our results show that the indirect evaporative efficiencies under a wet condition are greater than those under a dry condition, and the efficiencies of the paper/plastic sample (109% to 138%) are greater than those (67% to 89%) of the plastic sample; in addition, the wet-surface, indirect evaporative efficiencies of the paper/plastic sample are 32% to 36% greater than those of the plastic sample. Further, the wet-surface pressure drops of the paper/plastic sample are 13% to 23% larger than those of the plastic sample, and this might have been caused by the surface roughness of the samples. A rigorous heat-transfer analysis revealed that, for the plastic sample, 30% to 37% of the wet channels remained dry, whereas all of the channels were wet for the paper/plastic sample.

Effect of Insulin, Transferrin and Platelet-Derived Growth Factor Supplemented to Synthetic Oviduct Fluid Medium on In Vitro Development of Bovine Embryos Matured and Fertilized In Vitro (합성난관배양액에 첨가된 Insulin, Transferrin 및 Platelet-Derived Growth Factor (PDGF)가 소 수정란의 체외발육에 미치는 영향)

  • 이은송
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.283-291
    • /
    • 1997
  • In vitro development of bovine embryos is affected by many factors such as energy substrates, amino acids, and some growth factors. It has been reported that mRNA of insulin, PDGF and their receptors are detected in cow embryos, and that some chelating agents such as EDTA and transferrin have beneficial role on mouse and bovine embryos. The author hypothesized that insulin, transferrin arid PDGF added to a culture medium increase in vitro development of bovine embryos by chelating toxic substance(s) or increasing cell growth and metabolism. Immature oocytes from slaughtered ovaries of Holstein cows and heifers were matured for 24 hours in a TCM199 containing 10% fetal calf serum, FSH, LH and estradiol with granulosa cells in vitro. Matured oocytes were coincubated with sperm for 30 hours in a modified Tyrode's medium (IVF). Embryos cleaved to 2- to 4-cell at 30 hours after IVF were selected and cultured in a 30-$\mu$l drop of a synthetic oviduct fluid medium (SOFM) containing 0.8% BSA, Minimum Essential Medium essential and non-essential amino acids, and insulin, transferrin or PDGF for 9 days. Supplementation of a SOFM with insulin, and /or transferrin did not increase develop-mental rate to expanding and hatching blastocyst of 2- to 4-cell bovine embryos compared with control. The highest developmental rate to hatching blastocyst was shown when PDGF was added at the concentration of 10 ng /ml among the supplementing doses tested in the present study (p<0.05). Addition of PDGF without insulin to a SOFM could not increase embrye development, but combined addition of PDGF with insulin significantly increased (p<0.05) embryo development to hatching blastocyst (50%) compared with control (38%). In conclusion, insulin and PDGF supplemented to a SOFM may act synergistically and have beneficial effect on in vitro development of 2- to 4-cell bovine embryos matured and fertilized in vitro.

  • PDF

Air-Side Performance of Fin-and-Tube Heat Exchangers Having Non-Symmetric Slit Fins Under Wet Condition (비대칭형 슬릿 핀이 적용된 핀-관 열교환기의 습표면 성능)

  • Kim, Nea-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3698-3707
    • /
    • 2015
  • In this study, wet surface heat transfer and friction characteristics of non-symmetric slit-finned heat exchangers are experimentally investigated. Louver-finned heat exchangers are also tested for comparison purpose. The effect of fin pitch on j and f factor is negligible. Louver fin samples yield higher j and f factors than slit fin samples. For one row, j and f factors of louver fin are 27% and 31% higher than those of slit fin. For two row, j and f factors of louver fin are 15% and 30% higher. Both j and f factor decrease as the number of tube row increases. For one row, average j/f ratios of slit fin samples are 3.4% larger than those of louver fin samples. For two row, average j/f ratios of slit fin samples are 11.5% larger. A new correlation was developed using the present data.

Modeling and simulation of air-water upward annular flow characteristics in a vertical tube using CFD

  • Anadi Mondal;Subash L Sharma
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2881-2892
    • /
    • 2024
  • Annular flow refers to a special type of two-phase flow pattern in which liquid flows as a thin film at the periphery of a pipe, tube, or conduit, and gas with relatively high velocity flows at the center of the flow section. This gas also includes dispersed liquid droplets. The liquid film flow rate continuously changes inside the tube due to two processes-entrainment and deposition. To determine the liquid holdup, pressure drop, the onset of dryout, and heat transfer characteristics in annular flow, it is important to have proper knowledge of flow characteristics. Especially a better understanding of entrainment fraction is important for the heat transfer and safe operation of two-phase flow systems operating in an annular two-phase flow regime. Therefore, the objective of this work is to develop a computational model for the simulation of the annular two-phase flow regime and assess the various existing models for the entrainment rate. In this work, Computational Fluid Dynamics (CFD) in ANSYS FLUENT has been applied to determine annular flow characteristics such as liquid film thickness, film velocity, entrainment rate, deposition rate, and entrainment fraction for various gas-liquid flow conditions in a vertical upward tube. The gas core with droplets was simulated using the Discrete Phase Model (DPM) which is based on the Eulerian-Lagrangian approach. The Eulerian Wall Film (EWF) model was utilized to simulate liquid film on the tube wall. Three different models of Entrainment rate were implemented and assessed through user-defined functions (UDF) in ANSYS. Finally, entrainment for fully developed flow was determined and compared with the experimental data available in the literature. From the simulations, it was obtained that the Bertodano correlation performed best in predicting entrainment fraction and the results were within the ±30 % limit when compared to experimental data.

Preliminary Study of a New Extracorporeal Membrane Oxygenator Development When Using Pulsatile Flow

  • Lee, Sa-Ram;Lee, Kyung-Soo;Jung, Jae-Hoon;Mun, Cho-Hay;Min, Byoug-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.387-391
    • /
    • 2007
  • An oxygenator is a very important artificial organ and widely used for patients with lung failure or during open heart surgery. Although an oxygenator has been widely studied worldwide to enhance its efficiency, studies on oxygenators, in particular when using a pulsatile blood flow, are domestically limited. Therefore, a new oxygenator was developed in the lab and animal experimental results are described in the paper. The oxygenator is composed of polycarbonate housing and polypropylene hollow fibers. It has a total length of 400 mm and a surface area of $1.7 m^2$. The animal experiment lasted for 4 hours. The blood flow rate was set to 2 L/min and a pulsatile blood pump, T-PLS (Twin-Pulse Life Support), was used. Samples were drawn at the oxygenator's inlet and outlet. The total hemoglobin (Hb), saturation oxygen ($sO_2$), and partial oxygen pressure ($pO_2$), partial $CO_2$ pressure ($pCO_2$), and plasma bicarbonate ion concentration ($HCO_3^-$) were measured. The oxygen and carbon dioxide transfer rates were also calculated based on the experimental data in order to estimate the oxygenator's gas transfer efficiency. The oxygen and carbon dioxide transfer rates were $16.4{\pm}1.58$ and $165.7{\pm}10.96 mL/min$, respectively. The results showed a higher carbon dioxide transfer rate was achieved with the oxygenator. Also, the mean inlet and outlet blood pressures were 162.79 and 137.92 mmHg, respectively. The oxygenator has a low pressure drop between its inlet and outlet. The aim of own preliminary study was to make a new oxygenator and review its performance when applying a pulsatile blood pump thus, confirming the possibility of a new oxygenator suitable for pulsatile flow.

A Study on Thermal Performance of Plate Cooler for Cooling Medium Speed Engine Lubricant Oil (선박용 중속엔진 오일냉각용 판형쿨러의 전열성능에 관한 연구)

  • Park, Jae-Hong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.83-90
    • /
    • 2020
  • Plate heat exchangers(PHE) have been commercialized since the 1920s. Since then, although the basic concept of PHEs has changed little, its design and construction have progressed significantly to accommodate higher temperatures, higher pressures, and large heat exchanging capacities. The development trend of PHEs is consistent with heat plate developments with better thermal efficiency, lower pressure drop, and good flow distribution. The purpose of this paper is to introduce the main development processes of a plate cooler for medium-speed engine lubricant oil cooling in vessels which is in line with the development trend of PHEs and to provide its thermal performance data that were found out during experimental tests. The plate cooler in this study cannot measure the wall temperatures directly due to its structural characteristics, so the heat transfer coefficients were calculated using the modified Wilson Plot method. The water-to-water tests were first conducted experimentally to figure out the characteristics of heat transfer coefficients and pressure drops on the water side and then the water-to-oil tests followed to obtain the heat transfer coefficients on the oil side. The test results showed that heat transfer coefficients and pressure drops on both water and oil side increased with flow rates, and it was also found that all the development targets of the plate cooler in this study were achieved successfully.

An Analysis of Stress Transfer Behaviors within the Necrotic Cancellous Bone following Surgical Procedures or the Management of the Osteonecrosis of the Femoral Head (대퇴골두 무혈성 괴사증의 수술적 기법 적용 후 괴사 망상골 내에서의 응력 변화 해석)

  • Kim, J.S.;Lee, S.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.245-248
    • /
    • 1997
  • Operative interventions for the management of osteonecrosis of the femoral head (ONFH) include core drilling, with or without vascularized fibular bone grafting. Nevertheless, their clinical results have not been consistently satisfactory. Recently, a new surgical procedure that incorporates cementation with polymethylmethacrylate (PMMA) after core drilling has been tried clinically. In this study, a biomechanical analysis using a finite element method(FEM) was undertaken to evaluate surgical methods and their underlying surgical parameter. Our finite element models included five types. They were (1) normal model (Type I), (2) necrotic model (Type II), (3) core decompressed model (Type III). (4) fibular bone grafted model (Type IV), and (5) cemented with PMMA model (Type V). The geometric dimensions of the femur were based on digitized CT-scan data of a normal person. Various physiological loading conditions and surgical penetration depths by the core were used as mechanical variables to study their biomechanical contributions in stress transfer within the femoral head region. In addition. the peak von Mises stress(PVMS) within the necrotic cancellous bone of the femoral head was obtained. The fibular bone grafted method and cementation method provided optimal stress transfer behaviors. Here. substantial increase in the low stress level was observed when the penetration depth was extended to 0mm and 5mm from the subchondral region. Moreover, significant decrease in PVMS due to surgery was observed in the fibular bone grafted method and the cementation method when the penetration depths were extended up to 0 and 5mm from the subchondral region. The drop in PVMS was greater during toe-off than during heel-strike (57% vs. 28% in Type IV and 49% vs. 22% in Type V). Both the vascularized fibular bone grafting method (Type IV) and the new PMMA technique (Type V) appear to be very effective in providing good stress transfer and reducing the peak Von-Mises stress within the necrotic region. Overall results show that fibular bone grafting and cementation methods are quite similar. In light of above results, the new cementation method appears to be a promising surgical alternative or the treatment of ONFH. The use of PMMA for the core can be less prone to surgical complication as opposed to preparation of fibular bone graft and can achieve more immediate fixation between the core and the surrounding region.

  • PDF

A Study on Heat Transfer of n Storage Type Direct Contact Heat Exchanger for Solar Energy Utilization (태양열 이용 축열식 직접접촉 열교환기의 열전달에 관한 연구)

  • Kang, Yong-Heack;Jeon, Myung-Seok;Yoon, Hwan-Ki;Chun, Won-Gee
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.3-14
    • /
    • 1995
  • The Direct Contact heat Exchanger(DCHX) has been widely studied in the chemical industry for many years due to its inherent simplicity as a counter-current divice for heat and mass transfer. In many solar systems, the DCHX unit can be combined with the thermal storage unit, or alternatively, it can be used separately from the storage unit, much like an external(to storage) closed heat exchanger system. In the present work, the spray column type of direct contact heat exchangers are studied extensively to harness the solar energy for hot water and spaced heating. Some of the major considerations that are involved in the design of heat exchangers in this study are that : working fluid is a hydrocaabon(such as Texaterm) or water which is either lighter or heavier than storage medium. The experimental data have revealed some interesting characteristics concerning the application of DCHXs for solar energy utilization. These experiments are carried out in the line of solar heating system, major results are as follows : 1) the flow and aspect of working fluid drop for maxium heat transfer 2) efficiency and volumetric heat transfer coefficient of D.C.H.X with a heavier working fluid are higher than those of D.C.H.X with a lighter working fluid.

  • PDF

Optimum Design of Vaporizer Fin with Liquefied Natural Gas by Numerical Analysis

  • Jeong Hyo-Min;Chung Han-Shik;Lee Sang-Chul;Kong Tae-Woo;Yi Chung-Seub
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.545-553
    • /
    • 2006
  • Generally, the temperature drop under $0^{\circ}C$ on vaporizer surface creates frozen dews. This problem seems to increase as the time progress and humidity rises. In addition, the frozen dews create frost deposition. Consequently, heat transfer on vaporizer decreases because frost deposition causes adiabatic condition. Therefore, it is very important to solve this problem. This paper aims to study of the optimum design of used vaporizer at local LNG station. In this paper, experimental results were compared with numerical results. Geometries of numerical and experimental vaporizers were identical. Studied parameters of vaporizer are angle between two fins $(\Phi)$ and fin thickness $(TH_F)$. Numerical analysis results were presented through the correlations between the ice layer thickness $(TH_{ICE})$ on the vaporizer surface to the temperature distribution of inside vaporizer $(T_{IN})$, fin thickness $(TH_F)$, and angle between two fins $(\Phi)$. Numerical result shows good agreement with experimental outcome. Finally, the correlations for optimum design of vaporizer are proposed on this paper.

A Study on Activation Methods of Old Downtown in Daegu -Concentrated on the Practical Use of Unused School Facilities- (대구시 구도심 활성화 방안에 관한 연구 -유휴 학교시설 활용방안을 중심으로-)

  • Lee, Jong-Kuk
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.10 no.1
    • /
    • pp.64-73
    • /
    • 2011
  • Jung-gu in Daegu is an old downtown that has led the development of Daegu as a representative center and a commercial area with historicity and placeless. However, an urban center is losing its vitality due to the transfer of city halls and the development of new towns. The downtown area that is still important in a city should lead urban development continuously so that it needs to return its vitality by rehabilitating the weakling urban center. Accordingly this study makes the school which shows drop in the number of students and classes in the school buildings located in Jung-gu, Daegu. Consequently this study figures out a cause for the occurrence of unused school facilities and find a solution as the space for local residents by investigating the facilities of schools, the surroundings, the reality, and the present condition. This study is conducted to examine actual situations of a downtown area that has gone through development and history of Daegu as a center. To this end, it aims to seek for methods to activate the city by relating the practical use of unused school facilities.