• Title/Summary/Keyword: Drop Size Range

Search Result 88, Processing Time 0.023 seconds

Characteristics of Stress Drop and Energy Budget from Extended Slip-Weakening Model and Scaling Relationships (확장된 slip-weakening 모델의 응력 강하량과 에너지 수지 특성 및 스케일링 관계)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.253-266
    • /
    • 2020
  • The extended slip-weakening model was investigated by using a compiled set of source-spectrum-related parameters, i.e. seismic moment Mo, S-wave velocity Vs, corner-frequency fc, and source-controlled high-cut frequency fmax, for 113 shallow crustal earthquakes (focal depth less than 25 km, MW 3.0~7.5) that occurred in Japan from 1987 to 2016. The investigation was focused on the characteristics of stress drop, radiation energy-to-seismic moment ratio, radiation efficiency, and fracture energy release rate, Gc. The scaling relationships of those source parameters were also investigated and compared with those in previous studies, which were based on generally used singular models with the dimensionless numbers corresponding to fc given by Brune and Madariaga. The results showed that the stress drop from the singular model with Madariaga's dimensionless number was equivalent to the breakdown stress drop, as well as Brune's effective stress, rather than to static stress drop as has been usually assumed. The scale dependence of stress drop showed a different tendency in accordance with the size category of the earthquakes, which may be divided into small-moderate earthquakes and moderate-large earthquakes by comparing to Mo = 1017~1018 Nm. The scale dependence was quite similar to that shown by Kanamori and Rivera. The scale dependence was not because of a poor dynamic range of recorded signals or missing data as asserted by Ide and Beroza, but rather it was because of the scale dependent Vr-induced local similarity of spectrum as shown in a previous study by the authors. The energy release rate Gc with respect to breakdown distance Dc from the extended slip-weakening model coincided with that given by Ellsworth and Beroza in a study on the rupture nucleation phase; and the empirical relationship given by Abercrombie and Rice can represent the results from the extended slip-weakening model, the results from laboratory stick-slip experiments by Ohnaka, and the results given by Ellsworth and Beroza simultaneously. Also the energy flux into the breakdown zone was well correlated with the breakdown stress drop, ${\tilde{e}}$ and peak slip velocity of the fault faces. Consequently, the investigation results indicate the appropriateness of the extended slip-weakening model.

Characteristics of Continuous Preparation of ZnO Powder in a Micro Drop/bubble Fluidized React (마이크로 액적/기포 유동반응기에서 ZnO 입자의 연속제조 특성)

  • Lee, Seung Ho;Yang, Si Woo;Lim, Dae Ho;Yoo, Dong Jun;Lee, Chan Ki;Kang, Gyung Min;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.597-602
    • /
    • 2015
  • Characteristics of continuous preparation of ZnO powder were investigated in a micro drop/bubble fluidized reactor of which diameter and height were 0.03 m and 1.5 m, respectively. The flow rate of carrier gas for transportation of precursors to the reactor was 6.0 L/min and the concentration of Zn ion in the precursor solutions was 0.4 mol/L, respectively. Effects of reaction temperature (973 K~1,273 K) and flow rate of micro bubbles (0~0.4 L/min) on the pore characteristics of prepared ZnO powder were examined. The optimum reaction temperature for the maximum porosity in the ZnO powder was 1,073 K within this experimental condition. The mean size of ZnO powder prepared continuously in the reactor decreased but the surface of the powder became smooth, with increasing reaction temperature. The injection of micro bubbles into the reactor could enhance the formation of pores in the powder effectively, and thus the mean BET surface area could be increased by up to 58%. The mean size of prepared ZnO powder was in the range of $1.25{\sim}1.75{\mu}m$ depending on the reaction temperature.

Characteristics of Transmission of Floor Vibration and Floor Impact Noise Due to Human Activities (거주자의 거동으로 발생하는 바닥진동의 층간 전달 및 바닥충격음의 음압레벨 특성 평가)

  • Lee, MinJung;Choi, HyunKi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.5-13
    • /
    • 2017
  • Noise complaints among neighbors in apartment building are mainly caused by floor impact noise that is structure born noise due to occupant induced floor vibration. To control this noise problems many researchers have investigated floor systems and finishing materials. Light-weight impact noise affects by finishing materials, but heavy-weight impact noise induced by heel impacts during normal walking or jumping of children is concerned with structural system and floor vibration. To figure out the characteristics of floor impact noise and transmission of floor vibration due to human activities, vibration tests were conducted in apartment buildings. Impact hammer, heel drop and walking activities were loaded at center of upstairs living room, and accelerations of slabs for both upstairs and downstairs and sound pressure levels for downstairs were measured. The acceleration ratio of transmitted floor vibration to downstairs and human induced vibration in upstairs was between 0.5 and 1.0 according to slab size, wall, and load type. And floor impact noise occurred in the range of natural frequency of slab.

Research and Optimization of Four Serpentine-Wave Flow Fields in PEMFC

  • Fayi Yan;He Lu;Jian Yao;Xuejian Pei;Xiang Fan
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.373-387
    • /
    • 2024
  • The layout of the cathode flow field largely determines the net output power of the proton exchange membrane fuel cell (PEMFC). To make the normal mass transfer effect best, the longitudinal channel was waved based on four serpentine flow channels, and the effects of sag depth and longitudinal channel width on the output efficiency of the cell were explored. The results show that the wave channel design systematically enhances the forced convection between adjacent channels, which can prevent a large zone of oxygen starvation zone at the outlet of the channel. The increase of the normal velocity in the gas transmission process will inevitably induce a significant enhancement of the mass transfer effect and obtain a higher current density in the reaction zone. For the longitudinal channel width, it is found that increasing its size in the effective range can greatly reduce the channel pressure drop without reducing the output power, thereby improving the overall efficiency. When the sag depth and longitudinal channel width gradient are 0.6 mm and 0.2 mm respectively, PEMFC can obtain the best comprehensive performance.

Numerical study on the effect of viscoelasticity on pressure drop and film thickness for a droplet flow in a confined microchannel

  • Chung, Chang-Kwon;Kim, Ju-Min;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.59-69
    • /
    • 2009
  • The prediction of pressure drop for a droplet flow in a confined micro channel is presented using FE-FTM (Finite Element - Front Tracking Method). A single droplet is passing through 5:1:5 contraction - straight narrow channel - expansion flow domain. The pressure drop is investigated especially when the droplet flows in the straight narrow channel. We explore the effects of droplet size, capillary number (Ca), viscosity ratio ($\chi$) between droplet and medium, and fluid elasticity represented by the Oldroyd-B constitutive model on the excess pressure drop (${\Delta}p^+$) against single phase flow. The tightly fitted droplets in the narrow channel are mainly considered in the range of $0.001{\leq}Ca{\leq}1$ and $0.01{\leq}{\chi}{\leq}100$. In Newtonian droplet/Newtonian medium, two characteristic features are observed. First, an approximate relation ${\Delta}p^+{\sim}{\chi}$ observed for ${\chi}{\geq}1$. The excess pressure drop necessary for droplet flow is roughly proportional to $\chi$. Second, ${\Delta}p^+$ seems inversely proportional to Ca, which is represented as ${\Delta}p^+{\sim}Ca^m$ with negative m irrespective of $\chi$. In addition, we observe that the film thickness (${\delta}_f$) between droplet interface and channel wall decreases with decreasing Ca, showing ${\delta}_f{\sim}Ca^n$ Can with positive n independent of $\chi$. Consequently, the excess pressure drop (${\Delta}p^+$) is strongly dependent on the film thickness (${\delta}_f$). The droplets larger than the channel width show enhancement of ${\Delta}p^+$, whereas the smaller droplets show no significant change in ${\Delta}p^+$. Also, the droplet deformation in the narrow channel is affected by the flow history of the contraction flow at the entrance region, but rather surprisingly ${\Delta}p^+$ is not affected by this flow history. Instead, ${\Delta}p^+$ is more dependent on ${\delta}_f$ irrespective of the droplet shape. As for the effect of fluid elasticity, an increase in ${\delta}_f$ induced by the normal stress difference in viscoelastic medium results in a drastic reduction of ${\Delta}p^+$.

Study on the Result Changes with the Size of the Variance in Taguchi Method and Factor Experimental (다구찌 기법과 요인실험의 실험 데이터의 산포 크기에 따라 결과 변화 고찰)

  • Ree, Sangbok
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.1
    • /
    • pp.119-134
    • /
    • 2013
  • Purpose: The purpose of this paper is to show whether the results are changed with respect to the variance of the data, by analysis of data obtained from the Taguchi experimental techniques and general experiment. Because which cannot be prove by mathematical Formula, through experimental examples will show. Methods: Taguchi experiments were carried out with paper Helicopter experiment. Experimental Data are obtained by special designed Drop Test Equipment. While Experimental value arbitrarily changed, we looked at how Significant control Factor of Taguchi Methods and Factor experiments are changed. This process cannot be expressed as a Mathematical formula, but showed as a numerical example. Results: Saw significant changes in the factors when data is outside a certain range of the experimental data. By Test of Equivalence Variance, Experiment data is verified reliability. To find the Control Factor, Taguchi Method is better than the general experiment. Conclusion: We know that a Significant Factor is changed with the range of Variance of Experiment Data. The value of this paper is verified change process with Numerical Data obtained Experiment.

Size Verification of Small and Large Bubbles in a Bubble Column (기포탑에서 작은기포와 큰기포의 크기 구별)

  • Seo, Myung Jae;Jin, Hae-Ryong;Lim, Dae Ho;Lim, Ho;Kang, Yong;Jun, Ki-Won
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.304-309
    • /
    • 2012
  • Size verification of small and large bubbles in a bubble column was investigated by employing the dynamic gas disengagement (DGD) method and dual electrical resistivity probe (DRP) method, simultancously. The holdups of large and small bubbles in the bubble column in a given operating condition were obtained by means of the DGD method by measuring the pressure drop variation in the column with a variation of time after stopping the gas input into the column. The size and frequency of bubbles were measured by the DRP method in the same operating condition, from which the bubble holdup of each range of size was obtained. The verification of size in determining the large or small bubbles was decided by comparing the holdups of large or small bubbles measured by the DGD method with that measured by the DRP method. Filtered compressed air and tap water were used as a gas and a continuous liquid medium. The diameter and height of the bubble column were 0.102 m and 1.5 m, respectively. The demarcation size between the large and the small bubbles in the bubble column was 4.0~5.0 mm; the demarcation size was about 5.0 mm when the gas velocity was in the relatively low range, but about 4.0 mm when the gas velocity was in the relatively high range, within this experimental conditions.

The Upper Garment Sizing Systems according to Somatotype of Elderly Men (노년남성의 체형별 상의 치수 체계)

  • Kim Su Hyeon;Lee Jeong Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.1 s.139
    • /
    • pp.157-166
    • /
    • 2005
  • The purpose of this study was to establish the upper garment sizing systems for elderly men. These were on the basis of classification of 294 elderly men's somatotypes aged between 60 and 80 with the extent of drop value and analysis of the sizing systems of men's wear companies. The results were as follows: First, the sizing systems of men's wear companies were established with priority given to the young and the middle whose heights were taller than the elderly. There was no sizing system only for elderly men in men's wear companies. Secondly, as the height range increased, the size of chest and waist proportionally increased; however, the waist sizes were limited to somewhat small size ranges. So the sizing systems of men's wear companies had difficulty in covering up the developed-waist somatotype of the elderly. Thirdly, only 1 company out of 10 established the sizing system according to the somatotype. Lastly, the total numbers of size which were established by this study according to somatotype were 40; 18 sizes were set for type A, 10 for type Y, and 12 for type B. The standard sizes were 97-88-165 for type A,94-79-165 for type Y, and 97-94-165 for type B.

Resistance to Air Flow through Packed Fruits and Vegetables in Vented Box (상자포장 청과물의 송풍저항 특성)

  • 윤홍선;조영길;박경규
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.351-359
    • /
    • 1995
  • In pressure cooling system, produce were packed in vented box and cooled rapidly by producing a difference in air pressure on opposite faces of stacks of vented box. So, energy requirements and performance of pressure cooling system depended upon the air flow rate and the static pressure drop through packed produce in vented box. The static pressure drop across packed produce in vented box normally depended upon air flow rate, vent area of box and conditions of produce bed (depth, porosity, stacking patterns, size and shape of products) in box. The objectives of this study were to investigate the effect of vent area and air flow rate on airflow resistance of empty box and packed produce in vented box, and to investigate the relationship between the air flow resistance of packed products in vented box and sum of air flow resistance of empty box only and products in bulk only. Mandarins and tomatoes were used in the experiment. The airflow rate were in the range of 0.02~1.0$m^3$/s.$m^2$, the opening ratio of vent hole were in the range of 2.5~20% of the side area. The results were summerized as follows. 1. The pressure drops across vented box increased in proportion to superficial air velocity and decreased in proportion to opening ratio of vent hole. A regression equation to calculate airflow resistance of vented box was derived as a function of superficial air velocity and opening ratio of vent hole. 2. The pressure drops across packed produce in vented box increased in proportion to superficial air velocity and decreased in proportion to opening ratio of vent hole. 3. Because of the air velocity increase in the vicinity of vent hole in box, the airflow resistances of packed products in vented box were always higher than sum of air flow resistance of empty box only and products in bulk only. 4. Based on the airflow resistance of empty box and products in bulk, a regression equation to calculate airflow resistance of packed products in vented box was derived.

  • PDF

An Experiment on Particle Collection and Gas Removal in a 2-Stage Electrostatic Wet Scrubber (2단 정전식 세정집진기의 집진 및 가스제거 특성)

  • Yeo, Kuk-Hyun;Yoo, Kyung-Hoon;Son, Seung-Woo;Kim, Yoon-Shin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.745-752
    • /
    • 2006
  • DOS and NaCl aerosol particles were used to determine collection efficiencies of a 2-stage electrostatic wet scrubber with respect to particle size. The DOS and NaCl aerosols have geometric mean diameters of 0.1-3.0 urn, geometric standard deviations of $1.1{\sim}1.8$ and total number concentrations of $450{\sim}2,400\;particles/cm^3$. The tested operating variables for the electrostatic wet scrubber included air velocity and water injection rate. It was shown from the experimental results that particle collection efficiencies increased in the submicron particle size range when different polarities were applied on the water nozzle and corona wire, respectively. This increase in the collection efficiency is attributed to strong electrostatic attraction between the negative water droplets and positive submicron particles. The collection efficiencies also increased when water injection rate was increased or air velocity was decreased. Meanwhile, the pressure drop across the wet scrubber decreased by 90% compared with the existing mechanical wet scrubber. Finally, ammonia gas was used to determine gas removal efficiencies. It was observed that the gas removal efficiencies increased when the air velocity was decreased or the water injection rate was increased.