• Title/Summary/Keyword: Drop Motion

Search Result 189, Processing Time 0.034 seconds

Gender Differences of Knee Valgus Angle during Vertical Drop Landing in College Students (남녀 대학생들의 수직착지 시 성에 따른 무릎 외반각도의 차이)

  • Yi, Chung-Hwi;Park, So-Yeon;Yoo, Won-Gyu
    • Physical Therapy Korea
    • /
    • v.12 no.1
    • /
    • pp.28-35
    • /
    • 2005
  • The purpose of this study was to determine whether gender differences existed in knee valgus kinematics in college students when performing a vertical drop landing. The hypothesis of this study was that females would demonstrate greater knee valgus motion. These differences in knee valgus motion may be indicative of decreased dynamic knee joint control in females. This study compared the initial knee valgus angle and maximum knee valgus angle at the instant of impact on vertical drop landings between healthy men and women. In this study, 60 participants (30 males, 30 females) dropped from a height of 43 cm. A digital camera and two-dimensional video motion analysis software were used to analyze the kinematic data. There was significant difference in the mean knee valgus angle at initial contact landing between the two groups (Mean=$7.88^{\circ}$, SD=$4.24^{\circ}$ in males, Mean=$12.93^{\circ}$, SD=$2.89^{\circ}$ in females). The range of knee valgus angle on landing (Mean=$3.25^{\circ}$, SD=$5.72^{\circ}$ in males, Mean=$11.44^{\circ}$, SD=$6.39^{\circ}$ in females) was differed significantly (p<.05). The maximal angle of knee valgus on landing (Mean=$10.91^{\circ}$, SD=$6.89^{\circ}$ in males, Mean=$24.25^{\circ}$, SD=$6.38^{\circ}$ in females) was also differed significantly (p<.05). The females landed with a larger range of knee valgus motion than the males and this might have increased the likelihood of a knee injury. The absence of dynamic knee joint stability may be responsible for increased rates of knee injury in females. No method for accurate and practical screening and identification of athletes at increased risk of ACL injury is currently available to target those individuals that would benefit from neuromuscular training before sports participation.

  • PDF

A numerical analysis and experimental study on the prediction of spray characteristics (분무특성 예측을 위한 이론적 접근과 실험적 연구)

  • Yoon, S.J.;Cho, D.J.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.1-13
    • /
    • 1998
  • A theoretical and experimental study was carried out to predict the drop size distribution of the pressure swirl atomizer. Various analytical methods using the Kelvin-Helmholtz instability theory were tried to examine the wave growth on cylindrical liquid sheets. Cylinderical liquid sheets were extended to the case with the conical sheets. Perturbations due to tangential motion as well as longitudinal one were taken into account. And it was assumed that the breakup occurs when amplitude ratio exceeds exp(12), drop sizes were predicted only by theoretical approach. Drop size distribution was obtained by using maximum entropy formalism. Seven constraints in the form of the definition of mean diameter were used in this formulation in order to avoid the difficulties of estimating source terms. In this study $D_{10}$ only was introduced into the formulation as a constraint. The predicted drop size and drop size distribution agreed well with the measured data.

  • PDF

Micromachined Mercury Drop Tilt Sensor (MEMS 기술을 이용한 수은방울경사각센서 개발)

  • Oh, Jong-Hyun;Oh, Dong-Young;Lee, Seung S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.120-125
    • /
    • 2000
  • This paper proposes a tilt sensor made by MEMS technology. The sensor consists of an electrode glass a small mercury drop a circular channel and a cover glass. The mercury drop is used as medium of a current flow and in contact with two circular chromel electrodes used as an angular-motion resistance When this sensor inclines the mercury drop inside the circular channel moves into the bottom under the influence of gravity. A tilt angle can be measured by changed resistance as tilting this sensor, This sensor has a linear section between +50.$^{\circ}$ and -50.$^{\circ}$ with the accuracy of 2.$^{\circ}$. We are also studying about the enlargement of the linear section and the effect of the size of the mercury drop.

  • PDF

A Study on the Floating OWC Chamber Motion in Waves (부유기 OWC 챔버의 파중 운동해석)

  • 홍도천
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.19-27
    • /
    • 2002
  • The motion of a floating OWC chamber in waves is studied taking account of fluctuating air pressure in the air chamber. An atmospheric pressure drop occurs across the upper opening of the chamber which causes not only hydrodynamic but also pneumatic added mass and damping forces to the floating chamber. A velocity potential in the water due to the free surface oscillating pressure patch is added to the conventional radiation-diffraction potential problem. the potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine Green function wile the outer problem with the Kelvin Green function. The two integral equations are solved simultaneously by making use of a matching boundary condition at the lower opening of the chamber to the outer water region. The chamber motion in the frequency domain is calculated for various values of parameters related to the atmospheric pressure drop. The present methods can also be sued for the analysis of air-cushion vehicle motion as well as for the design of a floating OWC wave energy absorber.

A Study on the Floating OWC Chamber Motion in Waves (부유식 OWC 챔버의 파중 운동해석)

  • Hong, Do-Chun;Hong, Sa-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.191-197
    • /
    • 2002
  • The motion of a floating OWC chamber in waves is studied taking account of fluctuating.air pressure in the air chamber. An atmospheric pressure drop occurs across the upper opening of the chamber which causes not only hydrodynamic but also pneumatic added mass and damping forces to the floating chamber. A velocity potential in the water due to the free surface oscillating pressure patch is added to the conventional radiation-diffraction potential problem. The potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine Green function while the outer problem with the Kelvin Green function. The two integral equations are solved simultaneously by making use of a matching boundary condition at the lower opening of the chamber to the outer water region. The chamber motion in the frequency domain is calculated for various values of parameters related to the atmospheric pressure drop. The present methods can also be used for the analysis of air-cushion vehicle motion as well as for the design oj a floating owe wave energy absorber.

  • PDF

Analysis of Differences in Muscle Activity according to Badminton Stroke Movements (배드민턴 스트로크 동작에 따른 근활성도 차이 분석)

  • Kim Hwi-Tae;Kim Ki-Hong;Jeong Huan-Jong;Kim Byung-Kwan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.519-524
    • /
    • 2023
  • The purpose of this study is to construct basic data for efficient technical training by investigating the difference in muscle activity during badminton technical movements involving jump motions similar to game situations. Seven male badminton players were randomly assigned to perform smash, drop, and clear techniques, and electromyograms were measured during the implementation of three technical movements. Measured EMG was calculated by RMS and one-way ANOVA was performed. The muscle activity of the smashing motion did not show any significant difference according to the site. In drop motion, activity of PM in the upper extremity muscles was lower than that of BC and ECR, and FCR activity was lower than that of EC. The activity of ECR was higher than that of PM and FCR. The activity of ES in trunk muscles was lower than that of RF and GM. RF activity of lower extremity muscles was higher than that of ES and BF. In clear motion, the activity of TC in upper extremity muscle was higher than FCR. The activity of ES in trunk muscles was lower than that of BF. RF activity of lower extremity muscles was higher than that of BF, and BF activity was lower than that of RF and GM. The activity of GM was higher than that of BF. As for muscle activity according to badminton skills, smash and drop motions were higher than clear motions in FCR, and clear motions were higher than smash and drop motions in RA. In conclusion, it is considered that muscle activity during the badminton game is different according to the characteristics of each skill, and FCR can affect the smash and drop, and RA can affect the clear motion.

Change in Kinetics and Kinematics during 1-Footed Drop Landing with an Increase in Upper Body Weight

  • Lee, Jin-Taek;David, O'Sullivan
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The purpose of this study was to investigate changes in kinetic and kinematic variables associated with an increase in upper body weight. Eighteen healthy male university students($175.96{\pm}4.19\;cm$, $70.79{\pm}8.26\;kg$) participated. Eight motion analysis cameras(Qualysis Oqus 500) and 2 force AMTI platforms(Advanced Mechanical Technologies Inc. OR6-7, US) were used to record motion and forces during the drop landing at a frequency of 120 Hz and 1200 Hz, respectively. QTM software(Qualisys Track Manager) was used to record the data, and the variables were analyzed with Visual 3D and Matlab 2009. For the drop landing, a box of $4{\times}2{\times}0.46\;m$ was constructed from wood. Knee and ankle maximum flexion angle, knee flexion angle, knee and ankle angle at landing, time for maximum ankle flexion after landing, and time for maximum knee flexion after landing were calculated. There was a significant change in the time for maximum and minimum ground force reaction and the time for maximum dorsal flexion after landing(p<.05) with increasing weight. There was no significant change for the hip, knee, and ankle ROM, whereas there was an increase in the angle ROM as the weight increased, in the order of ankle, knee, and hip ROM. This result shows that the ankle joint ROM increased with increasing weight for shock attenuation during the drop landing. There was a trend for greater ankle ROM than knee ROM, but there was no clear change in the ROM of the hip joint with increasing weight. In conclusion, this study shows the importance of ankle joint flexibility and strength for safe drop landing.

Development of Optimal Design Program of Air-Coal Pneumatic Conveying System to Enhance Combustion Efficiency (연소효율 향상을 위한 공기-미분탄 수송배관장치의 최적화 설계 프로그램 개발)

  • Ku, Jae-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.7-14
    • /
    • 2009
  • This study describes to analyze the pressure drop characteristics for the air-particle flow in pneumatic coal powder conveying system and to proper design of the orifice located in the system to enhance combustion efficiency in furnace of the coal-fired power plant. Usually the system consists of the straight type pipe, the curved type pipe and the elbow, which cause increase of the pressure drop. In this study, the pressure drop arised in the system with straight and curved type pipes is analyzed with interactions of motion of air flow and particles. It is realized that total pressure drop increases with increasing of the pipe length and the angle of curved type pipe due to friction loss of air and particles in the system. The program for analysis of the pressure drop and optimum design of the orifice size for air flow control in the system is developed. The result is also compared with the existing system.

  • PDF

Analysis of Kinetic Differences According to Ankle Taping Types in Drop Landing (드롭랜딩 시 발목테이핑 유형에 따른 운동역학적 차이 분석)

  • Lee, Kyung-Ill;Hong, Wan-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.1
    • /
    • pp.51-57
    • /
    • 2014
  • The purpose of this study was to compare and analyze kinetic variables of lower limbs according to types of ankle taping in drop landing. For this, targeting seven male basketball players (average age: $20.8{\pm}0.74yrs$, average height: $187.4{\pm}3.92cm$, average weight: $79.8{\pm}7.62kg$) with no instability of ankle joints, the drop landing motion was conducted according to three types of inelastic taping (C-type), elastic taping (K-type), and no treatment (N-taping). Based on the result, the next conclusion was reached. First, the effect of taping for the players with stable ankles was minimal and the high load on ankle joints offset the fixing effect of inelastic taping. Thus the inelastic taping for the players with stable ankles did not have an effect on the control of dorsal flexion during one-foot landing. Second, increasing angular velocity by increasing the movable range of knee joints disperses impact forces, yet inelastic taping restricted the range of knee joint motion and at the same time increased angular velocity, adding to a negative effect on knee joints. Third, inelastic taping induced inefficient motion of Lower limbs and unstable impact force control of ankle joints at the moment of landing and produced maximum vertical ground reaction force, which led to an increase of load. Therefore, inelastic ankle taping of players whose jump actions occur very often should be reconsidered. Also, it is thought that this study has a great meaning in proving the problem of inelastic taping related to knee pain with unknown causes.

Effects of Landing Tasks on the Anterior Cruciate Ligament Injury Risk Factors in Female Basketball Players (여자 농구 선수들의 착지 유형이 전방십자인대 손상위험 요인에 미치는 영향)

  • Lee, Gye-San;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.385-390
    • /
    • 2014
  • The purpose of this study was to investigate the effects of landing tasks on the anterior cruciate ligament (ACL) injury risk factors in female basketball players. Fifteen female basketball players performed a drop landing and a drop landing with a vertical jump on the 40 cm height box. Three-dimensional motion analysis system and ground reaction force system was used for calculate the ACL injury risk factors. Paired samples t-test with Bonfferoni correction were performed. The drop landing with a vertical jump had the higher knee flexion angle, peak knee varus moment, trunk flexion angle than a drop landing. However, the drop landing had the higher trunk rotation angle than a drop landing with a vertical jump. These results indicate that seemingly minor variations between drop landing and drop landing with a vertical jump may influence the ACL injury risk factors. Caution should be used when comparing studies using different landing tasks.