• Title/Summary/Keyword: Drop Impact Analysis

Search Result 214, Processing Time 0.032 seconds

Experimental Study of Impact Behaviors of the Membrane for LNG Storage Tank (LNG 저장탱크용 멤브레인의 충격거동에 관한 실험적 연구)

  • Kim, Young-Gyu;Kim, Chung-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.68-74
    • /
    • 1995
  • This paper analyzes the behaviors of the membrane under drop impact loadings using the acoustic emission technique. The analysis is useful for evaluating the strength of the membrane as well as for studying its damping characterisics due to the corrugation and the ring knot. The membrane for LNG storage tank is basically composed linear and circular elements. Two membrane specimens have approximately same drop impact mass and same drop speed. Locan 320 system with piezoelectric sensor is used in the experimental measurement. Experimental results for the membranes indicated that AE siganls having higher energies were generated with increasing drop impact loadings. It was confirmed that the ring knot. membrane has high absorption of drop impact loadings in comparison with the flat membrane. These results are very important to reliable design and to improve the safey of the membrane components.

  • PDF

A Kinematic Analysis on Clear & Drop Motion of Badminton (배드민턴 클리어와 드롭 동작에 대한 운동학적 분석)

  • Song, Joo-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.217-229
    • /
    • 2003
  • The purpose of this study was to present the basic data on improving the skills for 3 junior high school national badminton players in clear and drop motion through the 3-dimensional image analysis. Therefore, the results of this study are as follows: 1. In the duration times per phase, subject C relatively showed a similar time between clear and drop motion. Accordingly, C took a more effective motion than A and B. 2. In the velocities of racket head, subject A and C showed similar changes relatively. However, in case of subject B, the velocity was decreased before back swing(E2) and increased until impact(E3). 3. Regardless of clear and drop motion, the changing phases of joint angle for wrist and elbow showed similar changes comparatively. 4. In the angles of upper body, clear motion was average 85.0 degree and drop one was average 80.7 degree during the impact(E3). Hence, it showed that drop motion hit the ball bowing the upper body more than clear one. 5. In the angles of racket head, clear motion was average 87.7 degree and drop one was average 85.6 degree during the impact(E3). Consequently, drop motion was impacted forward more than clear one.

Estimation of Allowable Drop Height for Oriental Pears by Impact Tests (충격시험에 따른 배의 허용낙하높이 추정)

  • Kim, M. S.;Jung, H. M.;Seo, R.;Park, I. K.;Hwang, Y. S.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.461-468
    • /
    • 2001
  • Impact between fruits and other materials is a major cause of product damage in harvesting and handling systems. The oriental pears are more susceptible to bruising than other fruits such as European pears and apples, and are required more careful handling. The interest in the handling of the pears for the processing systems has raised the question of the allowable drop height to which pears can be dropped without causing objectionable damage. Drop tests on pears were conducted using an impact device developed by authors to estimate the allowable drop height without bruising. The impact device was constructed to hold in a selected orientation and to release a fruit by vacuum for dropping on to a force transducer. The drop height was adjustable for zero to 60 cm to achieve the desired distance between the bottom of the fruits and the top of the impact force transducer. The transducer was secured to 150 kg$\sub$f/ concrete block. The transducer signal was sampled every 0.17 ms with a strain gage measurement board in the micro computer where it was digitaly stored for later analysis. The selected sample fruit was Niitaka cultivar of pears which is one of the most promising fruit for export in Korea. The pears were harvested during the 1998 harvest season from an orchard in Daejeon. The sample fruit was selected from two groups which were stored for 3 months and 5 months respectively by the method of current commercial practice. The pears were allowed to stabilize at environmental condition(18$^{\circ}C$, 65% rh) of the experimental room. One hundred fifty six pears were tested from the heights of 5, 7.5. 10 and 12.5 cm while measurement were made of impact peak force, contact time, time to peak force, dwell time, pear diameter and mass. The bioyield strength and modulus of elasticity were measured using UTM immediately after each drop test. The allowable drop height was estimated on the base of bioyield strength of the pears in two ways. One was assumed the peak force during impact test increasing linearly with time, and the other was based on the actual drop test results. The computer program was developed for measuring the impact characteristics of the pears and analyzing the data obtained in the study. The peak force increased while contact times decreased with increasing drop height and contact times of the sample from the hard tissue group. The allowable drop height increased with increasing bioyield strength and contact times, and also varied with Poisson\`s ratio, mass and equilibrium radius of the pears. The allowable drop height calculated by a theoretical method was in the range from 1 to 4 cm, meanwhile, the estimated drop height considering the result of the impact test was in the range from 1 to 6 cm. Since the physical properties of fruits affected significantly the allowable drop height, the physical properties of the fruits should be considered when estimating the allowable drop height.

  • PDF

Rockfall Impact Analysis of Typical Roadway Using Finite Element Simulation

  • Woo, Jin-Ho;Na, Won-Bae
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.92-96
    • /
    • 2012
  • This study presents a rockfall impact analysis of a typical roadway. Dynamic finite element analyses using ANSYS AUTODYN are conducted to determine the effect of the drop heights (5 m, 10 m) on the damage to a roadway model. The Rockfall is modeled as a spherical shape with a weight of 400 kg, and each drop height is converted to a corresponding impact velocity to save computational time. The roadway model is comprised of an asphalt layer, base layer, sub-base layer, and sub-grade layer. In this paper, the asphalt is modeled using a linear elastic model. The base layer, sub-base layer, and sub-grade layer are modeled using a Mohr-Coulomb model. From the analyses, the effects of the drop height on the damages and stresses are examined and discussed.

Analysis of dust emission characteristic by drop impact on decomposed granite soil (낙하 충격에 의한 풍화토의 비산먼지 발생 특성 분석)

  • Min, Seul-Gi;Son, Young-Hwan;Park, Jae-Sung;Noh, Soo-Kack;Bong, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.39-45
    • /
    • 2014
  • Dust is mostly caused by human activity. The effect of natural factors on dust emission were studied in many research, but the little effort in researching artificial factors of dust emission. The object of study is to analysis dust emission characteristic by drop impact. Particle matter $10{\mu}m$ ($PM_{10}$) was measured by drop impact on paved soil with changing drop height, weight and drop size. Increasing drop height cause more $PM_{10}$ emission. Increasing drop weight cause more $PM_{10}$ emission but had limit weight for increasing dust emission. Because the exceed kinetic energy of drop weight penetrate the soil surface. The limit perimeter was exist that separating $PM_{10}$ emission aspect. Under limit perimeter, $PM_{10}$ emission was increasing while perimeter was increasing, but over limit perimeter showed the opposite aspect. Regression equations for estimating $PM_{10}$ with kinetic energy and perimeter were made under limit perimeter and over limit perimeter. The $R^2$ of those equations were 0.784, 0.743. The error has occurred between measured $PM_{10}$ and calculated $PM_{10}$ in the equation under limit perimeter. But using equation of case for over limit perimeter, PM10 can be estimated with kinetic energy and drop perimeter.

A mite Element Modeling for the Puncture Drop Test of a Cask with the Failure of Impact Limiter (충격완충체의 효과를 고려할 수 있는 운반용기의 파열낙하시험 유한요소해석 방법)

  • Kwon, Kie-Chan;Seo, Ki-Seog;You, Gil-Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • Transport package for radioactive material should be structurally safe under puncture drop condition and its safety should be verified by test and numerical analysis. Most finite element analyses for puncture drop have been performed without modeling the impact limiter since failure is occurred in the materials of the impact limiter. This paper presents a new modeling methodology, where an element is eroded in case that the material's failure criteria are reached at the element's integration point, to investigate the effect of the impact limiter in the puncture process. The effectiveness of the proposed scheme is shown through the puncture drop analysis of hotcell transport cask, which is under design in KAERI. The results show that about 80 percent of the total impact energy is absorbed due to the deformation of impact limiter. Using the present method the puncture drop can be analyzed more accurately, but it would give conservative results compared to the actual test condition.

  • PDF

A Study on the Injury Assessment of Helicopter's Crew with Multi Point Restraint System under Drop Impact (낙하 충격을 받는 다점 구속 장치를 착용한 헬기 승무원의 상해도 평가에 관한 연구)

  • Lee, Jung-Hyun;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.590-599
    • /
    • 2009
  • In this paper, a method of modeling seat belts on crew seat during dynamic seat testing was studied. The body segments of the occupant were modeled with joints. The joints consisted with various stiffnesses, dampings, and frictions. Three types of seat belt restraint systems were investigated. The analysis for on the injury assessment of helicopter's crew under drop impact was conducted. The effectiveness of the seat belt system for crashworthiness and safety was evaluated. As the results of impact analysis, head, neck and spine of the crew can be easily damaged in the vertical direction more than the longitudinal direction. Based on the verified model, behavior of human body was studied with three-point restraint systems. The displacement and injury level of the 12-point restraint system was the smallest.

Analysis Method on the Free Drop Impact Condition of Spent Nuclear Fuel Shipping Casks (자유낙하충격조건에 있는 사용후핵연료 운반용기의 충격해석방법 연구)

  • 이재형;이영신;류충현;나재연
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.766-771
    • /
    • 2001
  • The package used to transport radioactive materials, which is called by cask, must be safe under normal and hypothetical accident conditions. These requirements for the cask design must be verified through test or finite element analysis. Since the cost for FE analysis is less than one for test. the verification by FE analysis is mainly used. But due to the complexity of mechanical behaviors. the results depends on how users apply the codes and it can cause severe errors during analysis. In this paper, finite element analysis is carried out for the 9 meters free drop and the puncture condition of the hypothetical accident conditions using LS-DYNA3D and ABAQUS/Explicit. We have investigated the analyzing technique for the free drop impact test of the cask and found several vulnerable cases to errors. The analyzed results were compared with each other. We have suggested a reliable and relatively simple analysis technique for the drop test of spent nuclear fuel casks.

  • PDF

Integrity of the Reactor Vessel Support System for a Postulated Reactor Vessel Closure Head Drop Event

  • Kim, Tae-Wan;Lee, Ki-Young;Lee, Dae-Hee;Kim, Kang-Soo
    • Nuclear Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.576-582
    • /
    • 1996
  • The integrity of reactor vessel support system of the Korean Standard Nuclear Power Plant (KSNPP) is investigated for a postulated reactor vessel closure head drop event. The closure head is disassembled from the reactor vessel during refueling process or general inspection of reactor vessel and internal structures, and carried to proposed location by the head lift rig. A postulated closure head drop event could be anticipated during closure head handling process. The drop event may cause an impact load on the reactor vessel and supporting system. The integrity of the supporting system is directly relevant to that of reactor vessel and reactor internals including fuels. Results derived by elastic impact analysis, linear and non-linear buckling analysis and elasto-plastic stress analysis of the supporting system implied that the integrity of the reactor vessel supporting system is intact for a postulated reactor vessel closure head drop event.

  • PDF