• 제목/요약/키워드: Drop Ejection

검색결과 23건 처리시간 0.018초

1 차원 Lumped 모델을 이용한 산업용 잉크젯 프린팅 헤드 토출 특성 해석 (Performance Analysis of the Industrial Inkjet Printing Head Using 1D Lumped Model)

  • 심원철;김영재;박창성;유영석;정재우;오용수;박성준
    • 한국정밀공학회지
    • /
    • 제24권11호
    • /
    • pp.101-107
    • /
    • 2007
  • Jettability analysis using one-dimensional(1D) lumped parameter model has been investigated to design the industrial inkjet head with proper drop velocity and drop volume. By simplifying the inkjet head system into an equivalent electrical circuit, lumped model has been developed. Performance of the lumped model is verified by the comparison between measured results of droplet velocity and ejection volume and predicted value. Also, the jetting performance of an inkjet head is characterized by varying the design parameter and driving condition. As a result, simulation results shows good agreement with the experimentally measured value. The developed lumped model enables to easily understand the effect of dimension change and predict the jetting performance.

고점도 용액 정밀토출을 위한 노즐 직경 및 표면젖음성 특성 연구 (Study of the Geometry and Wettability of Nozzles for Precise Ejection of High Viscous Liquids)

  • 이상현;배재현;이상민
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.123-128
    • /
    • 2021
  • Liquid dispensing systems are extensively used in various industries such as display, semiconductor, and battery manufacturing. Of the many types of dispensers, drop-on-demand piezoelectric jetting systems are widely used in semiconductor industries because of their ability to dispense minute volumes with high precision. However, due to the problems of nozzle clogging and undesirable dispensing behavior in these dispensers, which often result in device failure, the use of highly viscous fluids is limited. Accordingly, we studied the behaviors of droplet formation based on changes in viscosity. The effects of surface energy and the inner diameters of needle-type nozzles were also studied. Results showed that nozzles with lower surface energies reduced the ejection volume of droplets when a smaller nozzle diameter (0.21 mm in this study) was applied. These results indicate that the hydrophobic treatment of nozzle surfaces and the use of smaller nozzle diameters are critical factors enabling the use of highly viscous fluids in precision dispensing applications.

피에조 잉크젯 헤드에서 액적 토출 현상에 대한 연구 (A Study on Droplet Formation from Piezo Inkjet Print Head)

  • 오세영;이정용;이유섭;정재우;위상권
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.1003-1011
    • /
    • 2006
  • Droplets are ejected onto a substrate through a nozzle by pushing liquids in flow channels of drop-on-demand devices. The behavior of ejection and formation of droplets is investigated to enhance the physical understanding of the hydrodynamics involved in inkjet printing. The free surface phenomenon of a droplet is described using $CFD-ACE^{TM}$ which employs the volume-of-fluid (VOF) method with the piecewise linear interface construction (PLIC). Droplet formation characteristics are analyzed in various flow regimes with different Ohnesorge numbers. The computational results show that the droplet formations are strongly dependent on the physical properties of working fluids and the inlet flow conditions. In addition, the wetting characteristics of working fluids on a nozzle influence the volume and velocity of a droplet produced in the device. This study may provide an insight into how a liquid droplet is formed and ejected in a piezoelectric inkjet printing device.