• Title/Summary/Keyword: Drone operation

Search Result 154, Processing Time 0.024 seconds

Security Treats and Countermeasures in Drone Operation (드론 운용의 보안 위협과 대응 방안)

  • Ryu, Hae-Won;Choi, Sung-Han;Ha, Il-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.170-173
    • /
    • 2018
  • 최근 무인항공기는 국내뿐만 아니라 전 세계적으로 활용에 대한 관심이 높아지며 다양한 분야에서 사용되고 있다. 드론은 독립적으로 외부로부터 정보를 수집하는 임무를 수행하거나, 군집을 이루어 데이터를 주고받으며 특정한 임무를 수행하게 된다. 지금까지의 드론에 관한 연구는 신속하고 정확한 임무의 수행에만 초점을 두어왔고, 드론 자체 또는 드론 군집에서 주고받는 데이터의 보안과 안전에 관한 연구는 비교적 소홀히 다루어져 왔다. 따라서 본 연구는 드론 운용에 있어서 구성요소별 보안 취약점을 분석하고 취약점을 해결할 수 있는 대응방안을 설명한다. 특히 드론의 가장 중요한 임무 중 하나인 지상의 목표물 탐색에 있어서 발생할 수 있는 보안위협 요소와 이에 대한 해결방안을 제시한다.

Accuracy Analysis of Low-cost UAV Photogrammetry for Corridor Mapping (선형 대상지에 대한 저가의 무인항공기 사진측량 정확도 평가)

  • Oh, Jae Hong;Jang, Yeong Jae;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.565-572
    • /
    • 2018
  • Recently, UAVs (Unmanned Aerial Vehicles) or drones have gained popularity for the engineering surveying and mapping because they enable the rapid data acquisition and processing as well as their operation cost is low. The applicable fields become much wider including the topographic monitoring, agriculture, and forestry. It is reported that the high geospatial accuracy is achievable with the drone photogrammetry for many applications. However most studies reported the best achievable mapping results using well-distributed ground control points though some studies investigated the impact of control points on the accuracy. In this study, we focused on the drone mapping of corridors such as roads and pipelines. The distribution and the number of control points along the corridor were diversified for the accuracy assessment. In addition, the effects of the camera self-calibration and the number of the image strips were also studied. The experimental results showed that the biased distribution of ground control points has more negative impact on the accuracy compared to the density of points. The prior camera calibration was favored than the on-the-fly self-calibration that may produce poor positional accuracy for the case of less or biased control points. In addition, increasing the number of strips along the corridor was not helpful to increase the positional accuracy.

Study on Combat Efficiency According to Change in Quantity of Small Reconnaissance Drones in the Infantry Company Responsibility Area (중대급 작전지역에서 소형 감시정찰 드론의 수량 변화에 따른 전투 효율 연구)

  • Kyongsoo, Kim;Yongchan, Bae
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.4
    • /
    • pp.23-31
    • /
    • 2022
  • The development of innovative technology through the 4th Industrial Revolution is actively used in the defense field. In particular, surveillance and reconnaissance capabilities using drones will be of great help to the development of military combat capabilities, such as preparing for future military personnel reductions and reinforcing alert capabilities. In this study, we analyze the combat efficiency of drones how helpful drones can be to the military operations through simulations. Drones and enemy move in the efficient shortest path within a two-dimensional space in which operational areas are mapped into number such as detection probability. Based on the detection probability of an enemy infiltrating along the path with the lowest detection probability, the detection probability change that occurs whenever a drone is additionally deployed is presented, and we analyze the combat efficiency according to the additional drone input. Simulation proves that the increase in combat efficiency decreases as more drones are added in small operational areas such as company-level operational areas. This study is expected to contribute to the efficient operation of a limited number of drones in company-level units and to help determine the most desirable quantity of drones for additional combat power improvement.

21Century of Combat Aspects of North Korean Attack Drones Through the War of the Century (21세기 전쟁을 통해 본 북한 공격 드론의 전투 양상 전망)

  • Kang-Il Seo;Sang-Keun Cho;Jong-Hoon Kim;Ki-Won Kim;Sang-Hyuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.299-304
    • /
    • 2023
  • Recently, drones have been used as a major means of attack drones in major wars around the world, and it seems likely that they will evolve into game changers in the future. Recently, drones have been used as a major means of attack drones in major wars around the world, and it seems likely that they will evolve into game changers in the future. In the major wars of the 21century, attack drones are used for precision fire-guided or self-destruct attacks, For the purpose of cognitive warfare, its territory is expanding not only to land and air, but also to sea and water. These attack drones will perform multi-domain operations, and for this purpose, the level of autonomy will be improved and High-Low Mix We will continue to develop by strengthening concept-based scalability. North Korea has also been making considerable efforts to operate attack drones for a long time, and activities such as third-country-level self-explosive drones, artificial intelligence-based clustered self-explosive drones, and self-destructive stealth unmanned semi-submersible are expected. In addition to North Korea's provocations and attacks, it is hoped that there will be a need for active follow-up research on our military's countermeasures and utilization plans.

A Study on Vulnerability of Cyber Electronic Warfare and Analysis of Countermeasures for swarm flight of the NBC Reconnaissance Drones (화생방 정찰 드론의 군집비행 시 사이버전자전 취약점 및 대응방안 분석)

  • Kim, Jee-won;Park, Sang-jun;Lee, Kwang-ho;Jung, Chan-gi
    • Convergence Security Journal
    • /
    • v.18 no.2
    • /
    • pp.133-139
    • /
    • 2018
  • The 5 Game changer means the concepts of the army's operation against the enemy's asymmetric threats so that minimize damage to the public and leads to victory in war in the shortest time. A study of network architecture of Dronebot operation is a key study to carry out integrated operation with integrated C4I system by organically linking several drones battle groups through ICT. The NBC reconnaissance drones can be used instead of vehicles and humans to detect NBC materials and share situations quickly. However, there is still a lack of research on the swarm flight of the NBC reconnaissance drones and the weaknesses of cyber electronic warfare. In this study, we present weaknesses and countermeasures of CBRNs in swarm flight operations and provide a basis for future research.

  • PDF

Calculation of the Normal Operation Rate of Monitoring Hardware in the Long Tunnels of High-Speed and Urban Railways (고속 철도와 도시철도 장대터널 계측기기의 정상 작동율 산정 연구)

  • Woo, Jong-Tae
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.80-90
    • /
    • 2022
  • Purpose: The objective of this study was to improve smart monitoring and monitoring management technology in long tunnels by investigating and analyzing the normal operation rates of monitoring hardware in the long tunnels of high-speed and urban railways. Method: This study evaluated, analyzed, and compared the normal operation rate of 6-8 types of monitoring hardware for each long tunnel, targeting three high-speed railway lines with a long tunnel (i.e., Suseo-Pyeongtaek Line, Gyeongbu Line, and Honam Line) and two urban railway groups with a long tunnel (i.e., Seoul Metro Lines 5, 6, and 7, and 9). Result: The rank of the normal operation rate of monitoring hardware was in the order of Suseo-Pyeongtaek High-Speed Railway (92.1%), Seoul Metro Lines 5, 6, and 7 (85.8%), Seoul Metro Line 9 (85.2%), Gyeongbu High-speed Railway (80.5%), and Honam High-speed Railway (46.7%). Conclusion: The mean normal operation rate of the monitoring hardware in the three high-speed railway long tunnels was 83.4%, and that of the two urban railway long tunnels was 85.5%, indicating that the deviation between them was small. The mean normal operation rate of the monitoring hardware in the long tunnels of the five high-speed and urban railway lines was 84.2%.

A Study on the Radar Data Analysis of VFR Aircraft at an Airport (특정 공항에서의 VFR 항공기 레이다 항적자료 분석 연구)

  • Lee, KyungHan;Kim, DoHyun;Shin, DaiWon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.4
    • /
    • pp.37-43
    • /
    • 2019
  • Obstacle limitation surfaces are imaginary space surfaces that must be clear of obstacles for the aircraft to safely take off and land on the aerodrome. These surfaces are closely related to the safety of the VFR aircraft, which require a pilot to be able to see outside the cockpit, to control the aircraft's altitude, navigate, and avoid obstacles and other aircraft. The Republic of Korea, which has a lot of restrictions on the use of airspace, cannot provide a rich operating environment for VFR aircraft. Under these circumstances, safer operation will not be guaranteed if additional factors that directly or indirectly affect existing VFR routes, such as drone delivery services. This study analyzes and models the track distribution of each VFR section based on radar track data around a specific airport. Through this study, we estimate the three-dimensional space for VFR aircraft and provide the data for future research such as airspace analysis of VFR corridors and correlation with obstacle limitation surfaces.

Design and Implementation of an Optimal 3D Flight Path Recommendation System for Unmanned Aerial Vehicles (무인항공기를 위한 최적의 3차원 비행경로 추천 시스템 설계 및 구현)

  • Kim, Hee Ju;Lee, Won Jin;Lee, Jae Dong
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1346-1357
    • /
    • 2021
  • The drone technology, which is receiving a lot of attention due to the 4th industrial revolution, requires an Unmanned Aerial Vehicles'(UAVs) flight path search algorithm for automatic operation and driver assistance. Various studies related to flight path prediction and recommendation algorithms are being actively conducted, and many studies using the A-Star algorithm are typically performed. In this paper, we propose an Optimal 3D Flight Path Recommendation System for unmanned aerial vehicles. The proposed system was implemented and simulated in Unity 3D, and by indicating the meaning of the route using three different colors, such as planned route, the recommended route, and the current route were compared each other. And obstacle response experiments were conducted to cope with bad weather. It is expected that the proposed system will provide an improved user experience compared to the existing system through accurate and real-time adaptive path prediction in a 3D mixed reality environment.

Design and operation of the transparent integral effect test facility, URI-LO for nuclear innovation platform

  • Kim, Kyung Mo;Bang, In Cheol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.776-792
    • /
    • 2021
  • Conventional integral effect test facilities were constructed to enable the precise observation of thermal-hydraulic phenomena and reactor behaviors under postulated accident conditions to prove reactor safety. Although these facilities improved the understanding of thermal-hydraulic phenomena and reactor safety, applications of new technologies and their performance tests have been limited owing to the cost and large scale of the facilities. Various nuclear technologies converging 4th industrial revolution technologies such as artificial intelligence, drone, and 3D printing, are being developed to improve plant management strategies. Additionally, new conceptual passive safety systems are being developed to enhance reactor safety. A new integral effect test facility having a noticeable scaling ratio, i.e., the (UNIST reactor innovation loop (URI-LO), is designed and constructed to improve the technical quality of these technologies by performance and feasibility tests. In particular, the URI-LO, which is constructed using a transparent material, enables better visualization and provides physical insights on multidimensional phenomena inside the reactor system. The facility design based on three-level approach is qualitatively validated with preliminary analyses, and its functionality as a test facility is confirmed through a series of experiments. The design feature, design validation, functionality test, and future utilization of the URI-LO are introduced.

The Development Progress of Korean Aviation Industry and its Investment Strategy Based on the Evidence and the 4th Industrial Revolution

  • Kim, Jongbum
    • International Journal of Aerospace System Engineering
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • This study examines the history of Korean aviation industry and presents the investment strategy based on the evidence and the 4th industrial revolution. Looking at the evolution of the Korean aviation industry and its technological development will be a great help to support industrial and technological innovation in the future. The modern aviation industry is divided into stages of development, focusing on maintenance of equipment introduced in advanced countries, localization through license assembly, production of products based on technology, and international joint development. The development of aeronautics technology has been progressing towards a general improvement of economic efficiency, aircraft safety efficiency through environmental-friendliness, unmanned operation, and downsizing. The Korea Aerospace Research Institute has secured key technologies through development of several aircrafts such as Experimental Aircraft Kachi, EXPO Unmanned Airship, Twin-engine Composite Aircraft, Canard Aircraft, Multi-Purpose Stratosphere unmanned-airship, Medium Aerostats, Smart UAV, Surion, EAV-2H, KC-100, and OPV. The development strategy is discussed at the level of the evidence-based investment strategy that is currently being discussed, and so the investment priorities in aircraft is high. Current drone usage and development direction are not only producing parts using 3D printer, but also autonomous flight, communication (IoT, 5G), information processing (big data, machine learning). Therefore, the aviation industry is expected to lead the fourth industrial revolution.