• Title/Summary/Keyword: Drone images

Search Result 200, Processing Time 0.035 seconds

Comparative Analysis of Pre-processing Method for Standardization of Multi-spectral Drone Images (다중분광 드론영상의 표준화를 위한 전처리 기법 비교·분석)

  • Ahn, Ho-Yong;Ryu, Jae-Hyun;Na, Sang-il;Lee, Byung-mo;Kim, Min-ji;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1219-1230
    • /
    • 2022
  • Multi-spectral drones in agricultural observation require quantitative and reliable data based on physical quantities such as radiance or reflectance in crop yield analysis. In the case of remote sensing data for crop monitoring, images taken in the same area over time-series are required. In particular, biophysical data such as leaf area index or chlorophyll are analyzed through time-series data under the same reference, it can be directly analyzed. So, comparable reflectance data are required. Orthoimagery using drone images, the entire image pixel values are distorted or there is a difference in pixel values at the junction boundary, which limits accurate physical quantity estimation. In this study, reflectance and vegetation index based on drone images were calculated according to the correction method of drone images for time-series crop monitoring. comparing the drone reflectance and ground measured data for spectral characteristics analysis.

Generation of Epipolar Image from Drone Image Using Direction Cosine (방향코사인을 이용한 드론영상의 에피폴라 영상제작)

  • Kim, Eui Myoung;Choi, Han Seung;Hong, Song Pyo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.271-277
    • /
    • 2018
  • Generating an epipolar image which is removed a y-parallax from an original image is an essential technique for creating a 3D stereoscopic model or producing a map. In epipolar image production, there is a method of generating epipolar images by estimating the relative orientation parameters after matching the extracted distinct points in two images and a method of generating epipolar images by using the baseline and rotation angles of the two images after determining the exterior orientation parameters In this study, it was proposed a methodology to generate epipolar images using direction cosine in the exterior orientation parameters of the input images, and a method to use the transformation matrix for easy calculation when converting from the original image to the epipolar image. The applicability of the proposed methodology was evaluated by using images taken from the fixed wing and rotary wing drones. As a result, it was found that epipolar images were generated regardless of the type of drones.

Crack Inspection and Mapping of Concrete Bridges using Integrated Image Processing Techniques (통합 이미지 처리 기술을 이용한 콘크리트 교량 균열 탐지 및 매핑)

  • Kim, Byunghyun;Cho, Soojin
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.18-25
    • /
    • 2021
  • In many developed countries, such as South Korea, efficiently maintaining the aging infrastructures is an important issue. Currently, inspectors visually inspect the infrastructure for maintenance needs, but this method is inefficient due to its high costs, long logistic times, and hazards to the inspectors. Thus, in this paper, a novel crack inspection approach for concrete bridges is proposed using integrated image processing techniques. The proposed approach consists of four steps: (1) training a deep learning model to automatically detect cracks on concrete bridges, (2) acquiring in-situ images using a drone, (3) generating orthomosaic images based on 3D modeling, and (4) detecting cracks on the orthmosaic image using the trained deep learning model. Cascade Mask R-CNN, a state-of-the-art instance segmentation deep learning model, was trained with 3235 crack images that included 2415 hard negative images. We selected the Tancheon overpass, located in Seoul, South Korea, as a testbed for the proposed approach, and we captured images of pier 34-37 and slab 34-36 using a commercial drone. Agisoft Metashape was utilized as a 3D model generation program to generate an orthomosaic of the captured images. We applied the proposed approach to four orthomosaic images that displayed the front, back, left, and right sides of pier 37. Using pixel-level precision referencing visual inspection of the captured images, we evaluated the trained Cascade Mask R-CNN's crack detection performance. At the coping of the front side of pier 37, the model obtained its best precision: 94.34%. It achieved an average precision of 72.93% for the orthomosaics of the four sides of the pier. The test results show that this proposed approach for crack detection can be a suitable alternative to the conventional visual inspection method.

A Study on the Production of Perspective Images using Drone (드론을 이용한 다시점 투영 이미지 제작 연구)

  • Choi, Ki-chang;Kwon, Soon-chul;Lee, Seung-hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.953-958
    • /
    • 2022
  • Holographic Stereogram can provide the depth perception without the visual fatigue and dizziness because it use multiple images acquired from the multiple viewpoints. In order to produce a holographic stereogram, it is necessary to obtain perspective images of a live object and record it on film using a digital hologram printer. when acquiring perspective images, the hologram without distortion can be produced only when the perspective images with a constant distance between the camera and the target is obtained. If the target is small, it is possible to keep the constant distance from the camera to object. but if it is large, this is difficult to keep the constant distance. In this study, we photograph the large object using the POI (Point of Interest) function which is one of the smart flight modes of drone to produce perspective images required for the hologram production. after that, problems such as the unexpected shakings and distance change between camera and object is corrected in post production. as a result, we produce the perspective images.

Applications of image analysis techniques for the drone photography in water resources engineering (무인항공 촬영 영상분석 기술의 수자원기술 분야 적용)

  • Kim, Hyung Ki;Kwon, Hyuk Jae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.463-467
    • /
    • 2020
  • The main feature of this study is to automatically synthesize square images by sending aerial photographs and images from unmanned aerial vehicles (drons). It may be applicable to the cloud server, and to apply analytical algorithms for the suitable purpose of image processing. Drone imaging analysis is a process that can be used in various fields such as finding contaminated area of green algae, monitoring forest fire, and managing crop cultivation.

Improved Image Matching Method Based on Affine Transformation Using Nadir and Oblique-Looking Drone Imagery

  • Jang, Hyo Seon;Kim, Sang Kyun;Lee, Ji Sang;Yoo, Su Hong;Hong, Seung Hwan;Kim, Mi Kyeong;Sohn, Hong Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.477-486
    • /
    • 2020
  • Drone has been widely used for many applications ranging from amateur and leisure to professionals to get fast and accurate 3-D information of the surface of the interest. Most of commercial softwares developed for this purpose are performing automatic matching based on SIFT (Scale Invariant Feature Transform) or SURF (Speeded-Up Robust Features) using nadir-looking stereo image sets. Since, there are some situations where not only nadir and nadir-looking matching, but also nadir and oblique-looking matching is needed, the existing software for the latter case could not get good results. In this study, a matching experiment was performed to utilize images with differences in geometry. Nadir and oblique-looking images were acquired through drone for a total of 2 times. SIFT, SURF, which are feature point-based, and IMAS (Image Matching by Affine Simulation) matching techniques based on affine transformation were applied. The experiment was classified according to the identity of the geometry, and the presence or absence of a building was considered. Images with the same geometry could be matched through three matching techniques. However, for image sets with different geometry, only the IMAS method was successful with and without building areas. It was found that when performing matching for use of images with different geometry, the affine transformation-based matching technique should be applied.

Implementation and Verification of Deep Learning-based Automatic Object Tracking and Handy Motion Control Drone System (심층학습 기반의 자동 객체 추적 및 핸디 모션 제어 드론 시스템 구현 및 검증)

  • Kim, Youngsoo;Lee, Junbeom;Lee, Chanyoung;Jeon, Hyeri;Kim, Seungpil
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.163-169
    • /
    • 2021
  • In this paper, we implemented a deep learning-based automatic object tracking and handy motion control drone system and analyzed the performance of the proposed system. The drone system automatically detects and tracks targets by analyzing images obtained from the drone's camera using deep learning algorithms, consisting of the YOLO, the MobileNet, and the deepSORT. Such deep learning-based detection and tracking algorithms have both higher target detection accuracy and processing speed than the conventional color-based algorithm, the CAMShift. In addition, in order to facilitate the drone control by hand from the ground control station, we classified handy motions and generated flight control commands through motion recognition using the YOLO algorithm. It was confirmed that such a deep learning-based target tracking and drone handy motion control system stably track the target and can easily control the drone.

Characteristics of Drone Broadcasting Camera Moving through Content Analysis Method (내용분석을 통해 본 드론 방송영상의 카메라 움직임 특성 연구)

  • Lim, Hyunchan
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1178-1183
    • /
    • 2021
  • Based on the camera movement on image expression and grammar, this study intended to analyze the characteristics of image expression filmed and broadcasted by drones. This study analyzed drone images using the movement characteristics of existing video cameras as a coding nomenclature. These were intended to examine the differences from existing video grammar and their implications. This study conducted a content analysis using the entire population of drone news footage broadcast for four years in 2015, 2016, 2017 and 2018 by TV Chosun. The size of the screen, camera work, duration of the shot, camera angle, etc. were selected and analyzed. As a result, the drone camera work showed that it uses the most dolly shots in the case of camera movement, followed by the drone camera movement in the order of pan and tilt shots. For zoom, the frequency of use was the smallest. In addition, this study analyzed the size of the screen, duration of the shot, and camera angle of drone. Analysis shows that drones use certain camera movements most frequently, and unlike grandiose modifiers such as "extension of human gaze," drone remains as a supplementary means to enhance the traditional media expression.

Automatic Power Line Reconstruction from Multiple Drone Images Based on the Epipolarity

  • Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.127-134
    • /
    • 2018
  • Electric transmission towers are facilities to transport electrical power from a plant to an electrical substation. The towers are connected using power lines that are installed with a proper sag by loosening the cable to lower the tension and to secure the sufficient clearance from the ground or nearby objects. The power line sag may extend over the tolerance due to the weather such as strong winds, temperature changes, and a heavy snowfall. Therefore the periodical mapping of the power lines is required but the poor accessibility to the power lines limit the work because most power lines are placed at the mountain area. In addition, the manual mapping of the power lines is also time-consuming either using the terrestrial surveying or the aerial surveying. Therefore we utilized multiple overlapping images acquired from a low-cost drone to automatically reconstruct the power lines in the object space. Two overlapping images are selected for epipolar image resampling, followed by the line extraction for the resampled images and the redundant images. The extracted lines from the epipolar images are matched together and reconstructed for the power lines primitive that are noisy because of the multiple line matches. They are filtered using the extracted line information from the redundant images for final power lines points. The experiment result showed that the proposed method successfully generated parabolic curves of power lines by interpolating the power lines points though the line extraction and reconstruction were not complete in some part due to the lack of the image contrast.

The Visual Aesthetics of Drone Shot and Hand-held Shot based on the Representation of Place and Space : focusing on World Travel' Peninsula de Yucatán' Episode (장소와 공간의 재현적 관점에서 본 드론 쇼트와 핸드헬드 쇼트의 영상 미학 : <세계테마기행> '유카탄 반도'편을 중심으로)

  • Ryu, Jae-Hyung
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.3
    • /
    • pp.251-265
    • /
    • 2020
  • The Drone shot is moving images captured by a remotely controlled unmanned aerial vehicle, takes usually bird's eye view. The hand-held shot is moving images recorded by literal handheld shooting which is specialized to on-the-spot filming. It takes a walker's viewpoint through vivid realism of its self-reflexive camera movements. The purpose of this study is to analyze comparatively aesthetic functions of the drone shot and the hand-held shot. For this, the study understood Certeau's concepts of 'place' and 'space,' chose World Travel 'Peninsula de Yucatan' episode as a research object, and analytically applied two concepts to the scenes clearly presenting two shots' aesthetic characteristics. As a result, the drone shot took the authoritative viewpoint providing the general information and atmosphere as it overlooked the city with silent movements removing the self-reflexivity. This aesthetic function was reinforced the narration and subtitles mediating prior-knowledge about proper rules and orders of the place. The drone shot tended to project the location as a place. Conversely, the hand-held shot practically experienced the space with free walking which is free from rules and orders inherent in the city. The aesthetics of hand-held images represented the tactic resisting against the strategy of a subject of will and power in that the hand-held shot practiced anthropological walking by means of noticing everyday lives of the small town and countryside than main tourist attraction. In opposition to the drone shot, the hand-held shot tended to reflect the location as a space.