• Title/Summary/Keyword: Drone communication module

Search Result 10, Processing Time 0.026 seconds

Research on appropriate search altitude for drone-based air pollution search (드론기반 대기오염 탐색을 위한 적정 탐색고도 연구)

  • Ha, Il-Kyu;Kim, Ki-Hyun;Kim, Jin-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.294-305
    • /
    • 2022
  • Recently, drones have been widely used to solve environmental problems such as environmental protection and natural disaster monitoring. This study focuses on the problem of the search altitude of drones when using drones to search for air pollution in order to maintain the urban air environment. In particular, when exploring air pollution in cities using drones, various experiments are conducted to determine the appropriate search altitude for each air pollution source and each communication module. Through the experiment, the maximum measurable altitude for the most common air pollutants, such as CO (carbon monoxide), NO2 (nitrogen dioxide), O3 (ozone), and P10, P2.5 (fine dust), was identified, and the effective search altitude for each air pollution source was determined. As a result of the experiment, three types of drone search altitudes including legally measurable altitudes were suggested. The communication module measurable altitude was 60m to 120m depending on the communication module, and the effective measurable altitude was analyzed from 10m to 100m.

A study on F8L10D-N LoRa RF Module for Drone Based live Broadcasting system

  • Mfitumukiza, Joseph;Mariappan, Vinayagam;Lee, Minwoo;Cho, Juphil;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.1-5
    • /
    • 2016
  • In this paper, we present the study on the proposed design of a real-time transmission of a video from the drone to broadcasting station (OBVan) by using F8L10D-N LoRa Module. Nowadays, LoRa technology is proved to be the mass of low cost, long range machine-to-machine connectivity. Particularly in the field of broadcasting and communication system, F8L10D-N LoRa RF Module spread spectrum technology with long transmission distance and strong penetrative ability that is double stronger than traditional FSK as well as PSK modulation scheme.

Low Power and Long Range MAC Protocol for Inter-Drone communications based Sub-GHz Band (Drone간 Ad hoc통신 시스템을 위한 Sub-GHz 저전력 원거리 MAC Protocol 연구)

  • Lee, Joon beom;Min, Jin gi;Seo, Hyo-seung;Song, Dong hyuk;Kim, Hyeon jung;Son, Bong-ki;Lee, Jaeho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.90-93
    • /
    • 2016
  • 본 논문에서는 Sub-GHz band module을 Drone에 탑재하여 Drone과 전원공유로 Node(Drone)간 Low power and Long range Ad-hoc communication을 할 수 있는 방법을 제안하고자 한다. 또한 이동성이 있는 Node(Drone)의 Low power and Long range communication을 위해서 Drone에 적합한 Asynchronous MAC (medium access control) protocol을 비교분석하여 적용하였다. 본 고에서는 무선 센서 네트워크의 응용 범위가 확대되면서 고정된 인프라 없이 Drone간에 실시간 정보를 통신 할 수 있게 하고 사람의 이동이 어렵고 위험한 재난지역, 방사선노출지역 또는 우천시 유인기와 사람의 접근이 불가능한 지역을 Drone이 대신 이동하여 인명피해를 줄이고 안전하게 필요한 데이터를 수집하여 상황관제실로 전송하는 서비스를 제공하고자 한다.

Comparison and analysis of spatial information measurement values of specialized software in drone triangulation (드론 삼각측량에서 전문 소프트웨어의 공간정보 정확도 비교 분석)

  • Park, Dong Joo;Choi, Yeonsung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.249-256
    • /
    • 2022
  • In the case of Drone Photogrammetry, the "pixel to point tool" module of Metashape, Pix4D Mapper, ContextCapture, and Global MapperGIS, which is a simple software, are widely used. Each SW has its own logic for the analysis of aerial triangulation, but from the user's point of view, it is necessary to select a SW by comparative analysis of the coordinate values of geospatial information for the result. Taking aerial photos for drone photogrammetry, surveying GCP reference points through VRS-GPS Survey, processing the acquired basic data using each SW to construct ortho image and DSM, and GCPSurvey performance and acquisition from each SW The coordinates (X,Y) of the center point of the GCP target on the Ortho-Image and the height value (EL) of the GCP point by DSM were compared. According to the "Public Surveying Work Regulations", the results of each SW are all within the margin of error. It turned out that there is no problem with the regulations no matter which SW is included within the scope.

A Proposal for Drone Entity Identification and Secure Information Provision Technology Using Quantum Entropy Chip-Based Cryptographic Module in WLAN Environment (무선랜 환경에서 양자 엔트로피 칩 기반 암호모듈을 적용한 드론 피아식별과 안전한 정보 제공 기술 제안)

  • Jung, Seowoo;Yun, Seunghwan;Yi, Okyeon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.891-898
    • /
    • 2022
  • Along with global interest, drones are expanding the base of utilization such as transportation of goods, forest protection, and safety management, and cluster flights are being applied in various fields such as military operations and environmental monitoring. Currently, specialized networks such as e-UM 5G for services in specific industries are being established in Korea. In this regard, drone systems are also moving to establish specialized networks to provide services that are fused with AI and autonomous flight. As drones converge with various services, various security threats in various environments are also subordinated, and in response, requirements and guidelines for drone security are being prepared in Korea. In this paper, we propose a technology method for peer identification and safe information provision between cluster flight drones by utilizing a cryptographic module equipped with wireless LAN and quantum entropy-based random number generator in a cluster flight system and a mobile communication network such as e-UM 5G.

A study on the development of surveillance system for multiple drones in school drone education sites (학내 드론 교육현장의 다중드론 감시시스템 개발에 관한 연구)

  • Jin-Taek Lim;Sung-goo Yoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.697-702
    • /
    • 2023
  • Recently, with the introduction of drones, a core technology of the 4th industrial revolution, various convergence education using drones is being conducted in school education sites. In particular, drone theory and practice education is being conducted in connection with free semester classes and career exploration. The drone convergence education program has higher learner satisfaction than simple demonstration and practice education, and the learning effect is high due to direct practical experience. However, since practical education is being conducted for a large number of learners, it is impossible to restrict and control the flight of a large number of drones in a limited place. In this paper, we propose a monitoring system that allows the instructor to monitor multiple drones in real time and learners to recognize collisions between drones in advance when multiple drones are operated, focusing on education operated in schools. The communication module used in the experiment was equipped with GPS in Murata LoRa, and the server and client were configured to enable monitoring based on the location data received in real time. The performance of the proposed system was evaluated in an open space, and it was confirmed that the communication signal was good up to a distance of about 120m. In other words, it was confirmed that 25 educational drones can be controlled within a range of 240m and the instructor can monitor them.

A Design of AMCS(Agricultural Machine Control System) for the Automatic Control of Smart Farms (스마트 팜의 자동 제어를 위한 AMCS(Agricultural Machine Control System) 설계)

  • Jeong, Yina;Lee, Byungkwan;Ahn, Heuihak
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.201-210
    • /
    • 2019
  • This paper proposes the AMCS(Agricultural Machine Control System that distinguishes farms using satellite photos or drone photos of farms and controls the self-driving and operation of farm drones and tractors. The AMCS consists of the LSM(Local Server Module) which separates farm boundaries from sensor data and video image of drones and tractors, reads remote control commands from the main server, and then delivers remote control commands within the management area through the link with drones and tractor sprinklers and the PSM that sets a path for drones and tractors to move from the farm to the farm and to handle work at low cost and high efficiency inside the farm. As a result of AMCS performance analysis proposed in this paper, the PSM showed a performance improvement of about 100% over Dijkstra algorithm when setting the path from external starting point to the farm and a higher working efficiency about 13% than the existing path when setting the path inside the farm. Therefore, the PSM can control tractors and drones more efficiently than conventional methods.

Ultrawideband coupled relative positioning algorithm applicable to flight controller for multidrone collaboration

  • Jeonggi Yang;Soojeon Lee
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.758-767
    • /
    • 2023
  • In this study, we introduce a loosely coupled relative position estimation method that utilizes a decentralized ultrawideband (UWB), Global Navigation Support System and inertial navigation system for flight controllers (FCs). Key obstacles to multidrone collaboration include relative position errors and the absence of communication devices. To address this, we provide an extended Kalman filter-based algorithm and module that correct distance errors by fusing UWB data acquired through random communications. Via simulations, we confirm the feasibility of the algorithm and verify its distance error correction performance according to the amount of communications. Real-world tests confirm the algorithm's effectiveness on FCs and the potential for multidrone collaboration in real environments. This method can be used to correct relative multidrone positions during collaborative transportation and simultaneous localization and mapping applications.

A Development of Fluxgate Sensor-based Drone Magnetic Exploration System (플럭스게이트 센서 기반 드론 자력탐사 시스템 개발)

  • Noh, Myounggun;Lee, Seulki;Lee, Heuisoon;Ahn, Taegyu
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.208-214
    • /
    • 2020
  • In this study, we have developed a drone magnetic exploration system (proto-type) using a fluxgate magnetic sensor. Hardware of the system consists of a fluxgate magnetometer, an inertial measurement unit (IMU), a GPS, and a communication module. And we have developed monitoring software, which enables it to transmit the measured data to the ground control system (GCS) in real time. The measured magnetic data are finally saved as 1 Hz data after passing through a notch filter and a band-pass filter. For verification of this system, a preliminary test was conducted to check the magnetic responses of a magnetic object first, then the field test was carried out in two iron mines. We tested the developed system on the field test in Pocheon, Gyeonggi and Jeongseon, Gangwon. The magnetic data from the developed drone system was very similar to those from unmanned airship system developed by Korea Institute of Geoscience and Mineral Resources (KIGAM). As a result, preliminary experiment and field test have demonstrated that this system is applicable for outdoor aeromagnetic exploration. It requires more studies to improve filter function and instrument performance to minimize noise in the future.

Experimental Analysis to Derive Optimal Wavelength in Underwater Optical Communication Environment (수중 광통신 환경에서 최적 파장을 도출하기 위한 실험적 해석)

  • Dong-Hyun Kwak;Seung-il Jeon;Jung-rak Choi;Min-Seok Han
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.478-488
    • /
    • 2023
  • This paper investigates the naval application of laser communication as a potential replacement for traditional acoustic wave communication in underwater environments. We developed a laser transceiver using Arduino and MATLAB, conducting a water tank experiment to validate communication feasibility across diverse underwater conditions. In the first experiment, when transmitting data through a laser, the desired message was converted into data and transmitted, received, and confirmed to be converted into the correct message. In the second experiment, the operation of communication in underwater situations was confirmed, and in the third experiment, the intensity of light was measured using the CDS illuminance sensor module and the limits of laser communication were measured and confirmed in various underwater situations. Additionally, MATLAB code was employed to gather data on salinity, water temperature, and water depth for calculating turbidity. Optimal wavelength values (532nm, 633nm, 785nm, 1064nm) corresponding to calculated turbidity levels (5, 20, 55, 180) were determined and presented. The study then focuses on analyzing potential applications in naval tactical communication, remote sensing, and underwater drone control. Finally, we propose measures for overcoming current technological limitations and enhancing performance.