• Title/Summary/Keyword: Drone Photogrammetry

Search Result 87, Processing Time 0.018 seconds

Accuracy Assessment of Environmental Damage Range Calculation Using Drone Sensing Data and Vegetation Index (드론센싱자료와 식생지수를 활용한 환경피해범위 산출 정확도 평가)

  • Eontaek Lim ;Yonghan Jung ;Seongsam Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.837-847
    • /
    • 2023
  • In this study, we explored a method for assessing the extent of damage caused by chemical substances at an accident site through the use of a vegetation index. Data collection involved the deployment of two different drone types, and the damaged area was determined using photogrammetry technology from the 3D point cloud data. To create a vegetation index image, we utilized spectral band data from a multi-spectral sensor to generate an orthoimage. Subsequently, we conducted statistical analyses of the accident site with respect to the damaged area using a predefined threshold value. The Kappa values for the vegetation index, based on the near-infrared band and the green band, were found to be 0.79 and 0.76, respectively. These results suggest that the vegetation index-based approach for analyzing damage areas can be effectively applied in investigations of chemical accidents.

Study on the Effect of Emissivity for Estimation of the Surface Temperature from Drone-based Thermal Images (드론 열화상 화소값의 타겟 온도변환을 위한 방사율 영향 분석)

  • Jo, Hyeon Jeong;Lee, Jae Wang;Jung, Na Young;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • Recently interests on the application of thermal cameras have increased with the advance of image analysis technology. Aside from a simple image acquisition, applications such as digital twin and thermal image management systems have gained popularity. To this end, we studied the effect of emissivity on the DN (Digital Number) value in the process of derivation of a relational expression for converting DN to an actual surface temperature. The DN value is a number representing the spectral band value of the thermal image, and is an important element constituting the thermal image data. However, the DN value is not a temperature value indicating the actual surface temperature, but a brightness value indicating high and low heat as brightness, and has a non-linear relationship with the actual surface temperature. The reliable relationship between DN and the actual surface temperature is critical for a thermal image processing. We tested the relationship between the actual surface temperature and the DN value of the thermal image, and then the radiation adjustment was performed to better estimate actual surface temperatures. As a result, the relation graph between the actual surface temperature and the DN value similarly show linear pattern with the relation graph between the radiation-controlled non-contact thermometer and the DN value. And the non-contact temperature after adjusting the emissivity was closer to the actual surface temperature than before adjusting the emissivity.

Supervised classification for greenhouse detection by using sharpened SWIR bands of Sentinel-2A satellite imagery

  • Lim, Heechang;Park, Honglyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.435-441
    • /
    • 2020
  • Sentinel-2A satellite imagery provides VNIR (Visible Near InfraRed) and SWIR (ShortWave InfraRed) wavelength bands, and it is known to be effective for land cover classification, cloud detection, and environmental monitoring. Greenhouse is one of the middle classification classes for land cover map provided by the Ministry of Environment of the Republic of Korea. Since greenhouse is a class that has a lot of changes due to natural disasters such as storm and flood damage, there is a limit to updating the greenhouse at a rapid cycle in the land cover map. In the present study, we utilized Sentinel-2A satellite images that provide both VNIR and SWIR bands for the detection of greenhouse. To utilize Sentinel-2A satellite images for the detection of greenhouse, we produced high-resolution SWIR bands applying to the fusion technique performed in two stages and carried out the detection of greenhouse using SVM (Support Vector Machine) supervised classification technique. In order to analyze the applicability of SWIR bands to greenhouse detection, comparative evaluation was performed using the detection results applying only VNIR bands. As a results of quantitative and qualitative evaluation, the result of detection by additionally applying SWIR bands was found to be superior to the result of applying only VNIR bands.

Analysis on Mapping Accuracy of a Drone Composite Sensor: Focusing on Pre-calibration According to the Circumstances of Data Acquisition Area (드론 탑재 복합센서의 매핑 정확도 분석: 데이터 취득 환경에 따른 사전 캘리브레이션 여부를 중심으로)

  • Jeon, Ilseo;Ham, Sangwoo;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.577-589
    • /
    • 2021
  • Drone mapping systems can be applied to many fields such as disaster damage investigation, environmental monitoring, and construction process monitoring. To integrate individual sensors attached to a drone, it was essential to undergo complicated procedures including time synchronization. Recently, a variety of composite sensors are released which consist of visual sensors and GPS/INS. Composite sensors integrate multi-sensory data internally, and they provide geotagged image files to users. Therefore, to use composite sensors in drone mapping systems, mapping accuracies from composite sensors should be examined. In this study, we analyzed the mapping accuracies of a composite sensor, focusing on the data acquisition area and pre-calibration effect. In the first experiment, we analyzed how mapping accuracy varies with the number of ground control points. When 2 GCPs were used for mapping, the total RMSE has been reduced by 40 cm from more than 1 m to about 60 cm. In the second experiment, we assessed mapping accuracies based on whether pre-calibration is conducted or not. Using a few ground control points showed the pre-calibration does not affect mapping accuracies. The formation of weak geometry of the image sequences has resulted that pre-calibration can be essential to decrease possible mapping errors. In the absence of ground control points, pre-calibration also can improve mapping errors. Based on this study, we expect future drone mapping systems using composite sensors will contribute to streamlining a survey and calibration process depending on the data acquisition circumstances.

Electric Power Line Dips Measurement Using Drone-based Photogrammetric Techniques (드론 기반 사진측량기법을 활용한 고압 송전선의 처짐량 측정)

  • Kim, Yu Jong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.453-460
    • /
    • 2017
  • High voltage power transmission lines have been to keep the proper dip for maintenance. Powerline dips at a random point are conventionally measured by the direct or indirect observation but it is not only unsafe but labor-intensive. Therefore in this study we applied the photogrammetric technique to remotely measure the powerline dips. Since it is not easy to extract conjugate points from linear powerlines, we exploited the epipolar lines acrossing the powerlines for 3D mapping of the powerlines and dip measurements. The vertical mapping accuracy estimated at two field-surveyed power line points was 15~16cm that are within 5% of deflection at the points and less than 3% of the powerline dip.

A Measures to Implements the Conservation and Management of Traditional Landscape Architecture using Aerial Photogrammetry and 3D Scanning (전통조경 보존·관리를 위한 3차원 공간정보 적용방안)

  • Kim, Jae-Ung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.1
    • /
    • pp.77-84
    • /
    • 2020
  • This study is apply 3D spatial information per traditional landscape space by comparing spatial information data created using a small drone and 3D scanner used for 3D spatial information construction for efficient preservation and management of traditional landscaping space composed of areas such as scenic sites and traditional landscape architectures. The analysis results are as follows. First, aerial photogrammetry data is less accurate than 3D scanners, but it was confirmed to be more suitable for monitoring landscape changes by reading RGB images than 3D scanners by texture mapping using digital data in constructing orthographic image data. Second, the orthographic image data constructed by aerial photogrammetry in a traditional landscaping space consisting of a fixed area, such as Gwanghalluwon Garden, produced visually accurate and precise results. However, as a result of the data extraction, data for trees, which is one of the elements that make up the traditional landscaping, was not extracted, so it was determined that 3D scanning and aerial surveying had to be performed in parallel, especially in areas where trees were densely populated. Third, The surrounding trees in Soswaewon Garden caused many errors in 3D spatial information data including topographic data. It was analyzed that it is preferable to use 3D scanning technology for precise measurement rather than aerial photogrammetry because buildings, landscaping facilities and trees are dense in a relatively small space. When 3D spatial information construction data for a traditional landscaping space composed of area using a small drone and a 3D scanner free from temporal and spatial constraints and compared the data was compared, the aerial photogrammetry is effective for large site such as Hahoe Village, Gyeongju and construction of a 3D space using a 3D scanner is effective for traditional garden such as Soswaewon Garden.

The Precise Three Dimensional Phenomenon Modeling of the Cultural Heritage based on UAS Imagery (UAS 영상기반 문화유산물의 정밀 3차원 현상 모델링)

  • Lee, Yong-Chang;Kang, Joon-Oh
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.1
    • /
    • pp.85-101
    • /
    • 2019
  • Recently, thank to the popularization of light-weight drone through the significant developments in computer technologies as well as the advanced automated procedures in photogrammetry, Unmanned Aircraft Systems have led to a growing interest in industry as a whole. Documentation, maintenance, and restoration projects of large scaled cultural property would required accurate 3D phenomenon modeling and efficient visual inspection methods. The object of this study verify on the accuracies achieved of 3D phenomenon reconstruction as well as on the validity of the preservation, maintenance and restoration of large scaled cultural property by UAS photogrammetry. The test object is cltural heritage(treasure 1324) that is the rock-carved standing Bodhisattva in Soraesan Mountain, Siheung, documented in Goryeo Period(918-1392). This standing Bodhisattva has of particular interests since it's size is largest stone Buddha carved in a rock wall and is wearing a lotus shaped crown that is decorated with arabesque patterns. The positioning accuracy of UAS photogrammetry were compared with non-target total station survey results on the check points after creating 3D phenomenal models in real world coordinates system from photos, and also the quantified informations documented by Culture Heritage Administration were compared with UAS on the bodhisattva image of thin lines. Especially, tests the validity of UAS photogrammetry as a alternative method of visual inspection methods. In particular, we examined the effectiveness of the two techniques as well as the relative fluctuation of rock surface for about 2 years through superposition analysis of 3D points cloud models produced by both UAS image analysis and ground laser scanning techniques. Comparison studies and experimental results prove the accuracy and efficient of UAS photogrammetry in 3D phenomenon modeling, maintenance and restoration for various large-sized Cultural Heritage.

Evaluation of SWIR bands utilization of Worldview-3 satellite imagery for mineral detection (광물탐지를 위한 Worldview-3 위성영상의 SWIR 밴드 활용성 평가)

  • Kim, Sungbo;Park, Honglyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.203-209
    • /
    • 2021
  • With the recent development of satellite sensor technology, high-spatial-resolution imagery of various spectral wavelength bands have become possible. Worldview-3 satellite sensor provides panchromatic images with high-spatial-resolution and VNIR (Visible Near InfraRed) and SWIR (ShortWave InfraRed) bands with low-spatial-resolution, so it can be used in various fields such as defense, environment, and surveying. In this study, mineral detection was performed using Worldview-3 satellite imagery. In order to effectively utilize the VNIR and SWIR bands of the Worldview-3 satellite image, the sharpening technique was applied to the spatial resolution of the panchromatic image. To confirm the utility of SWIR bands for mineral detection, mineral detection using only VNIR bands was performed and comparatively evaluated. As the mineral detection technique, SAM (Spectral Angle Mapper), a representative similarity technique, was applied, and the pixels detected as minerals were selected by applying an empirical threshold to the analysis result. Quantitative evaluation was performed using reference data on the results of similarity analysis to evaluate the accuracy of mineral detection. As a result of the accuracy evaluation, the detection rate and false detection rate of mineral detecting using SWIR bands were calculated to be 0.882 and 0.011, respectively, and the results using only VNIR bands were 0.891 and 0.037, respectively. It was found that the detection rate when the SWIR bands were additionally used was lower than that when only the VNIR bands were used. However, it was found that the false detection rate was significantly reduced, and through this, it was possible to confirm the applicability of SWIR bands in mineral detection.

Improving Precision of the Exterior Orientation and the Pixel Position of a Multispectral Camera onboard a Drone through the Simultaneous Utilization of a High Resolution Camera (고해상도 카메라와의 동시 운영을 통한 드론 다분광카메라의 외부표정 및 영상 위치 정밀도 개선 연구)

  • Baek, Seungil;Byun, Minsu;Kim, Wonkook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2021
  • Recently, multispectral cameras are being actively utilized in various application fields such as agriculture, forest management, coastal environment monitoring, and so on, particularly onboard UAV's. Resultant multispectral images are typically georeferenced primarily based on the onboard GPS (Global Positioning System) and IMU (Inertial Measurement Unit)or accurate positional information of the pixels, or could be integrated with ground control points that are directly measured on the ground. However, due to the high cost of establishing GCP's prior to the georeferencing or for inaccessible areas, it is often required to derive the positions without such reference information. This study aims to provide a means to improve the georeferencing performance of a multispectral camera images without involving such ground reference points, but instead with the simultaneously onboard high resolution RGB camera. The exterior orientation parameters of the drone camera are first estimated through the bundle adjustment, and compared with the reference values derived with the GCP's. The results showed that the incorporation of the images from a high resolution RGB camera greatly improved both the exterior orientation estimation and the georeferencing of the multispectral camera. Additionally, an evaluation performed on the direction estimation from a ground point to the sensor showed that inclusion of RGB images can reduce the angle errors more by one order.

Road Extraction from Images Using Semantic Segmentation Algorithm (영상 기반 Semantic Segmentation 알고리즘을 이용한 도로 추출)

  • Oh, Haeng Yeol;Jeon, Seung Bae;Kim, Geon;Jeong, Myeong-Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.239-247
    • /
    • 2022
  • Cities are becoming more complex due to rapid industrialization and population growth in modern times. In particular, urban areas are rapidly changing due to housing site development, reconstruction, and demolition. Thus accurate road information is necessary for various purposes, such as High Definition Map for autonomous car driving. In the case of the Republic of Korea, accurate spatial information can be generated by making a map through the existing map production process. However, targeting a large area is limited due to time and money. Road, one of the map elements, is a hub and essential means of transportation that provides many different resources for human civilization. Therefore, it is essential to update road information accurately and quickly. This study uses Semantic Segmentation algorithms Such as LinkNet, D-LinkNet, and NL-LinkNet to extract roads from drone images and then apply hyperparameter optimization to models with the highest performance. As a result, the LinkNet model using pre-trained ResNet-34 as the encoder achieved 85.125 mIoU. Subsequent studies should focus on comparing the results of this study with those of studies using state-of-the-art object detection algorithms or semi-supervised learning-based Semantic Segmentation techniques. The results of this study can be applied to improve the speed of the existing map update process.