• Title/Summary/Keyword: Drone Photogrammetry

Search Result 87, Processing Time 0.024 seconds

A Study on Mapping Levees Using Drone Imagery (드론영상을 이용한 하천 제방 매핑에 관한 연구)

  • Choung, Yun-Jae;Park, Hyeon-Cheol;Choi, Soo-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.30-30
    • /
    • 2018
  • Research on mapping levees is an important task for assessing levee stability. The drone imagery acquired in river basins is useful for generating real-time levee maps. This research proposes a robust methodology for mapping levees in river basins using the drone imagery. In the first step, the multiple imagery taken in the test bed was acquired by the drone. Then, the orthorectified image and DEM (Digital Elevation Model) were generated by the photogrammetry and image processing process. Finally, the significant features on levee surfaces such as levee tops, levee lines, levee slopes, eroded areas were detected from the generated DEM and orthorectified image by manual labors and automatic methods. In future research, the automatic procedure for identifying the significant levee features from the drone imagery would be proposed.

  • PDF

Change Monitoring in Ecological Restoration Area of Open-Pit Mine Using Drone Photogrammetry (드론사진측량을 이용한 노천광산 생태복원지역의 변화 모니터링)

  • Lee, Dong Gook;Yu, Young Geol;Ru, Ji Ho;Lee, Hyun Jik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.97-104
    • /
    • 2016
  • In this study, analyze and monitor the change of the ecological restoration area inside the open-pit mine in Gangwon-do. and to analyze and monitor the change of ecological restoration area. analyzed the distribution of vegetation using high-resolution orthophoto of various periods and analyzed terrain change using DSM/DEM in study area. Therefore, orthophoto and 포인트 클라우드 were collected from 2014 aerial laser surveying and 2015 fixed-wing drone photogrammetry. In addition, orhtophoto and 포인트 클라우드 were produced by using rotary-wing drone photogrammety in 2016, and change of ecological restoration area was analyzed using this. As a result, it's possible to perform change monitoring of the open-pit mine ecological restoration area. using nEGI and VARI, about 10-30% of the area ratio of the result of extracting vegetation distribution area is distributed, and the comparison DSM and DEM cross section and restoration plan line, the cross section made by using the drone were similar, and the earth-volume analysis was possible.

A Study on the Survey Methodology in Riverbed Private Use using Integration Drone Photogrammetry and Cadastral Information (드론 사진측량과 지적정보를 융합한 하천부지 점용 조사방법)

  • Oh, Yi Kyun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.135-144
    • /
    • 2017
  • The riverbed areas have exposed to various natural disasters and the private use by neighboring residents have caused many problems. The research objectives are to survey the actual situation of riverbed areas in order to prevent landscape damage and private use. Drone and photogrammetry, orthophoto, DSM(Digital Surface Model), digital topographic map and cadastral information have been integrated by GIS technology. The flood and disaster vulnerable area has been surveyed and the land use and private use has been analyzed using cadastral information. The research results show that the analyzed data can be used for providing foundation data for management of river and also can be used for surveying actual situation of private use on the riverbed areas.

Improved Image Matching Method Based on Affine Transformation Using Nadir and Oblique-Looking Drone Imagery

  • Jang, Hyo Seon;Kim, Sang Kyun;Lee, Ji Sang;Yoo, Su Hong;Hong, Seung Hwan;Kim, Mi Kyeong;Sohn, Hong Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.477-486
    • /
    • 2020
  • Drone has been widely used for many applications ranging from amateur and leisure to professionals to get fast and accurate 3-D information of the surface of the interest. Most of commercial softwares developed for this purpose are performing automatic matching based on SIFT (Scale Invariant Feature Transform) or SURF (Speeded-Up Robust Features) using nadir-looking stereo image sets. Since, there are some situations where not only nadir and nadir-looking matching, but also nadir and oblique-looking matching is needed, the existing software for the latter case could not get good results. In this study, a matching experiment was performed to utilize images with differences in geometry. Nadir and oblique-looking images were acquired through drone for a total of 2 times. SIFT, SURF, which are feature point-based, and IMAS (Image Matching by Affine Simulation) matching techniques based on affine transformation were applied. The experiment was classified according to the identity of the geometry, and the presence or absence of a building was considered. Images with the same geometry could be matched through three matching techniques. However, for image sets with different geometry, only the IMAS method was successful with and without building areas. It was found that when performing matching for use of images with different geometry, the affine transformation-based matching technique should be applied.

Accuracy Analysis of Low-cost UAV Photogrammetry for Corridor Mapping (선형 대상지에 대한 저가의 무인항공기 사진측량 정확도 평가)

  • Oh, Jae Hong;Jang, Yeong Jae;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.565-572
    • /
    • 2018
  • Recently, UAVs (Unmanned Aerial Vehicles) or drones have gained popularity for the engineering surveying and mapping because they enable the rapid data acquisition and processing as well as their operation cost is low. The applicable fields become much wider including the topographic monitoring, agriculture, and forestry. It is reported that the high geospatial accuracy is achievable with the drone photogrammetry for many applications. However most studies reported the best achievable mapping results using well-distributed ground control points though some studies investigated the impact of control points on the accuracy. In this study, we focused on the drone mapping of corridors such as roads and pipelines. The distribution and the number of control points along the corridor were diversified for the accuracy assessment. In addition, the effects of the camera self-calibration and the number of the image strips were also studied. The experimental results showed that the biased distribution of ground control points has more negative impact on the accuracy compared to the density of points. The prior camera calibration was favored than the on-the-fly self-calibration that may produce poor positional accuracy for the case of less or biased control points. In addition, increasing the number of strips along the corridor was not helpful to increase the positional accuracy.

Applicability Review of Street Dimensional Data Survey Using Point Clouds Generated from Drone Photogrammetry (드론 항공사진측량 기반 포인트 클라우드 데이터를 활용한 가로환경 조사 가능성 연구)

  • Oh, Sunghoon;Kim, Myung Jo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.401-408
    • /
    • 2021
  • With the proposal of amendments to the Pedestrian Safety Act in 2021, when the amendment bill is passed in the near future, a general dimensional investigation of the sidewalks' physical condition, which is the basis of pedestrian safety, is expected to be legislated and made mandatory. Therefore, this study presented a affordable methodology for street environment survey using entry-level drones and examined the feasibility of conducting a complete survey of pedestrian paths by local governments nationwide. To this end, various street facilities in the experimental site were measured to compare and analyze the accuracy of the point cloud data. As a result of the analysis, it was found that the measurement error range satisfies the public surveying guidelines. If the methodology presented in this study is applied, it is expected that individual local governments will be able to make a significant contribution to monitoring the physical conditions of streets to improve the pedestrian environment in the near future.

Performance Comparison and Analysis between Keypoints Extraction Algorithms using Drone Images (드론 영상을 이용한 특징점 추출 알고리즘 간의 성능 비교)

  • Lee, Chung Ho;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.79-89
    • /
    • 2022
  • Images taken using drones have been applied to fields that require rapid decision-making as they can quickly construct high-quality 3D spatial information for small regions. To construct spatial information based on drone images, it is necessary to determine the relationship between images by extracting keypoints between adjacent drone images and performing image matching. Therefore, in this study, three study regions photographed using a drone were selected: a region where parking lots and a lake coexisted, a downtown region with buildings, and a field region of natural terrain, and the performance of AKAZE (Accelerated-KAZE), BRISK (Binary Robust Invariant Scalable Keypoints), KAZE, ORB (Oriented FAST and Rotated BRIEF), SIFT (Scale Invariant Feature Transform), and SURF (Speeded Up Robust Features) algorithms were analyzed. The performance of the keypoints extraction algorithms was compared with the distribution of extracted keypoints, distribution of matched points, processing time, and matching accuracy. In the region where the parking lot and lake coexist, the processing speed of the BRISK algorithm was fast, and the SURF algorithm showed excellent performance in the distribution of keypoints and matched points and matching accuracy. In the downtown region with buildings, the processing speed of the AKAZE algorithm was fast and the SURF algorithm showed excellent performance in the distribution of keypoints and matched points and matching accuracy. In the field region of natural terrain, the keypoints and matched points of the SURF algorithm were evenly distributed throughout the image taken by drone, but the AKAZE algorithm showed the highest matching accuracy and processing speed.

Accuracy Assessment of Topographic Volume Estimation Using Kompsat-3 and 3-A Stereo Data

  • Oh, Jae-Hong;Lee, Chang-No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.261-268
    • /
    • 2017
  • The topographic volume estimation is carried out for the earth work of a construction site and quarry excavation monitoring. The topographic surveying using instruments such as engineering levels, total stations, and GNSS (Global Navigation Satellite Systems) receivers have traditionally been used and the photogrammetric approach using drone systems has recently been introduced. However, these methods cannot be adopted for inaccessible areas where high resolution satellite images can be an alternative. We carried out experiments using Kompsat-3/3A data to estimate topographic volume for a quarry and checked the accuracy. We generated DEMs (Digital Elevation Model) using newly acquired Kompsat-3/3A data and checked the accuracy of the topographic volume estimation by comparing them to a reference DEM generated by timely operating a drone system. The experimental results showed that geometric differences between stereo images significantly lower the quality of the volume estimation. The tested Kompsat-3 data showed one meter level of elevation accuracy with the volume estimation error less than 1% while the tested Kompsat-3A data showed lower results because of the large geometric difference.

Automatic Classification of Drone Images Using Deep Learning and SVM with Multiple Grid Sizes

  • Kim, Sun Woong;Kang, Min Soo;Song, Junyoung;Park, Wan Yong;Eo, Yang Dam;Pyeon, Mu Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.407-414
    • /
    • 2020
  • SVM (Support vector machine) analysis was performed after applying a deep learning technique based on an Inception-based model (GoogLeNet). The accuracy of automatic image classification was analyzed using an SVM with multiple virtual grid sizes. Six classes were selected from a standard land cover map. Cars were added as a separate item to increase the classification accuracy of roads. The virtual grid size was 2-5 m for natural areas, 5-10 m for traffic areas, and 10-15 m for building areas, based on the size of items and the resolution of input images. The results demonstrate that automatic classification accuracy can be increased by adopting an integrated approach that utilizes weighted virtual grid sizes for different classes.

3D Thermo-Spatial Modeling Using Drone Thermal Infrared Images (드론 열적외선 영상을 이용한 3차원 열공간 모델링)

  • Shin, Young Ha;Sohn, Kyung Wahn;Lim, SooBong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.223-233
    • /
    • 2021
  • Systematic and continuous monitoring and management of the energy consumption of buildings are important for estimating building energy efficiency, and ultimately aim to cope with climate change and establish effective policies for environment, and energy supply and demand policies. Globally, buildings consume 36% of total energy and account for 39% of carbon dioxide emissions. The purpose of this study is to generate three-dimensional thermo-spatial building models with photogrammetric technique using drone TIR (Thermal Infrared) images to measure the temperature emitted from a building, that is essential for the building energy rating system. The aerial triangulation was performed with both optical and TIR images taken from the sensor mounted on the drone, and the accuracy of the models was analyzed. In addition, the thermo-spatial models of temperature distribution of the buildings in three-dimension were visualized. Although shape of the objects 3D building modeling is relatively inaccurate as the spatial and radiometric resolution of the TIR images are lower than that of optical images, TIR imagery could be used effectively to measure the thermal energy of the buildings based on spatial information. This paper could be meaningful to present extension of photogrammetry to various application. The energy consumption could be quantitatively estimated using the temperature emitted from the individual buildings that eventually would be uses as essential information for building energy efficiency rating system.