• Title/Summary/Keyword: Drone Images

Search Result 205, Processing Time 0.02 seconds

Research Trend of the Remote Sensing Image Analysis Using Deep Learning (딥러닝을 이용한 원격탐사 영상분석 연구동향)

  • Kim, Hyungwoo;Kim, Minho;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.819-834
    • /
    • 2022
  • Artificial Intelligence (AI) techniques have been effectively used for image classification, object detection, and image segmentation. Along with the recent advancement of computing power, deep learning models can build deeper and thicker networks and achieve better performance by creating more appropriate feature maps based on effective activation functions and optimizer algorithms. This review paper examined technical and academic trends of Convolutional Neural Network (CNN) and Transformer models that are emerging techniques in remote sensing and suggested their utilization strategies and development directions. A timely supply of satellite images and real-time processing for deep learning to cope with disaster monitoring will be required for future work. In addition, a big data platform dedicated to satellite images should be developed and integrated with drone and Closed-circuit Television (CCTV) images.

Estimating the Stand Level Vegetation Structure Map Using Drone Optical Imageries and LiDAR Data based on an Artificial Neural Networks (ANNs) (인공신경망 기반 드론 광학영상 및 LiDAR 자료를 활용한 임분단위 식생층위구조 추정)

  • Cha, Sungeun;Jo, Hyun-Woo;Lim, Chul-Hee;Song, Cholho;Lee, Sle-Gee;Kim, Jiwon;Park, Chiyoung;Jeon, Seong-Woo;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.653-666
    • /
    • 2020
  • Understanding the vegetation structure is important to manage forest resources for sustainable forest development. With the recent development of technology, it is possible to apply new technologies such as drones and deep learning to forests and use it to estimate the vegetation structure. In this study, the vegetation structure of Gongju, Samchuk, and Seoguipo area was identified by fusion of drone-optical images and LiDAR data using Artificial Neural Networks(ANNs) with the accuracy of 92.62% (Kappa value: 0.59), 91.57% (Kappa value: 0.53), and 86.00% (Kappa value: 0.63), respectively. The vegetation structure analysis technology using deep learning is expected to increase the performance of the model as the amount of information in the optical and LiDAR increases. In the future, if the model is developed with a high-complexity that can reflect various characteristics of vegetation and sufficient sampling, it would be a material that can be used as a reference data to Korea's policies and regulations by constructing a country-level vegetation structure map.

Drone-based Vegetation Index Analysis Considering Vegetation Vitality (식생 활력도를 고려한 드론 기반의 식생지수 분석)

  • CHO, Sang-Ho;LEE, Geun-Sang;HWANG, Jee-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.21-35
    • /
    • 2020
  • Vegetation information is a very important factor used in various fields such as urban planning, landscaping, water resources, and the environment. Vegetation varies according to canopy density or chlorophyll content, but vegetation vitality is not considered when classifying vegetation areas in previous studies. In this study, in order to satisfy various applied studies, a study was conducted to set a threshold value of vegetation index considering vegetation vitality. First, an eBee fixed-wing drone was equipped with a multi-spectral camera to construct optical and near-infrared orthomosaic images. Then, GIS calculation was performed for each orthomosaic image to calculate the NDVI, GNDVI, SAVI, and MSAVI vegetation index. In addition, the vegetation position of the target site was investigated through VRS survey, and the accuracy of each vegetation index was evaluated using vegetation vitality. As a result, the scenario in which the vegetation vitality point was selected as the vegetation area was higher in the classification accuracy of the vegetation index than the scenario in which the vegetation vitality point was slightly insufficient. In addition, the Kappa coefficient for each vegetation index calculated by overlapping with each site survey point was used to select the best threshold value of vegetation index for classifying vegetation by scenario. Therefore, the evaluation of vegetation index accuracy considering the vegetation vitality suggested in this study is expected to provide useful information for decision-making support in various business fields such as city planning in the future.

Preliminary Study on GIS Mapping-based Fine Dust Measurement in Complex Construction Site (단지조성공사 내 드론을 활용한 GIS 맵핑 기반 미세먼지 측정 시스템 기초 연구)

  • Lee, Jaeho;Han, Jae Goo;Kim, Young Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.319-325
    • /
    • 2021
  • A fine dust measurement using drones is becoming an increasingly common technology, and air pollutants can be identified through dust monitoring in partial industrial areas. A station for measuring fine dust provides information at large construction site offices. On the other hand, it was difficult to check the fine dust in the pollutant source accurately. Therefore, the drone took measurements directly after been placed at the site. While measuring fine dust, monitoring noise occurred due to the influence of the drone's down-wind during landing, but the measurements were similar to the numerical value of the grounded pollution source on the height of 30 m. The field applicability to the study area has limitations in periodic updates using satellite images because the terrain was constantly changing due to considerable flattening fieldwork. Therefore, this study implemented a system that can reflect real-time field information through GIS mapping using drones.

Development of Deep Learning Model for Detecting Road Cracks Based on Drone Image Data (드론 촬영 이미지 데이터를 기반으로 한 도로 균열 탐지 딥러닝 모델 개발)

  • Young-Ju Kwon;Sung-ho Mun
    • Land and Housing Review
    • /
    • v.14 no.2
    • /
    • pp.125-135
    • /
    • 2023
  • Drones are used in various fields, including land survey, transportation, forestry/agriculture, marine, environment, disaster prevention, water resources, cultural assets, and construction, as their industrial importance and market size have increased. In this study, image data for deep learning was collected using a mavic3 drone capturing images at a shooting altitude was 20 m with ×7 magnification. Swin Transformer and UperNet were employed as the backbone and architecture of the deep learning model. About 800 sheets of labeled data were augmented to increase the amount of data. The learning process encompassed three rounds. The Cross-Entropy loss function was used in the first and second learning; the Tversky loss function was used in the third learning. In the future, when the crack detection model is advanced through convergence with the Internet of Things (IoT) through additional research, it will be possible to detect patching or potholes. In addition, it is expected that real-time detection tasks of drones can quickly secure the detection of pavement maintenance sections.

Validation of GOCI-II Products in an Inner Bay through Synchronous Usage of UAV and Ship-based Measurements (드론과 선박을 동시 활용한 내만에서의 GOCI-II 산출물 검증)

  • Baek, Seungil;Koh, Sooyoon;Lim, Taehong;Jeon, Gi-Seong;Do, Youngju;Jeong, Yujin;Park, Sohyeon;Lee, Yongtak;Kim, Wonkook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.609-625
    • /
    • 2022
  • Validation of satellite data products is critical for subsequent analysis that is based on the data. Particularly, performance of ocean color products in turbid and shallow near-land ocean areas has been questioned for long time for its difficulty that stems from the complex optical environment with varying distribution of water constituents. Furthermore, validation with ship-based or station-based measurements has also exhibited clear limitation in its spatial scale that is not compatible with that of satellite data. This study firstly performed validation of major GOCI-II products such as remote sensing reflectance, chlorophyll-a concentration, suspended particulate matter, and colored dissolved organic matter, using the in-situ measurements collected from ship-based field campaign. Secondly, this study also presents preliminary analysis on the use of drone images for product validation. Multispectral images were acquired from a MicaSense RedEdge camera onboard a UAV to compensate for the significant scale difference between the ship-based measurements and the satellite data. Variation of water radiance in terms of camera altitude was analyzed for future application of drone images for validation. Validation conducted with a limited number of samples showed that GOCI-II remote sensing reflectance at 555 nm is overestimated more than 30%, and chlorophyll-a and colored dissolved organic matter products exhibited little correlation with in-situ measurements. Suspended particulate matter showed moderate correlation with in-situ measurements (R2~0.6), with approximately 20% uncertainty.

Road Extraction from Images Using Semantic Segmentation Algorithm (영상 기반 Semantic Segmentation 알고리즘을 이용한 도로 추출)

  • Oh, Haeng Yeol;Jeon, Seung Bae;Kim, Geon;Jeong, Myeong-Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.239-247
    • /
    • 2022
  • Cities are becoming more complex due to rapid industrialization and population growth in modern times. In particular, urban areas are rapidly changing due to housing site development, reconstruction, and demolition. Thus accurate road information is necessary for various purposes, such as High Definition Map for autonomous car driving. In the case of the Republic of Korea, accurate spatial information can be generated by making a map through the existing map production process. However, targeting a large area is limited due to time and money. Road, one of the map elements, is a hub and essential means of transportation that provides many different resources for human civilization. Therefore, it is essential to update road information accurately and quickly. This study uses Semantic Segmentation algorithms Such as LinkNet, D-LinkNet, and NL-LinkNet to extract roads from drone images and then apply hyperparameter optimization to models with the highest performance. As a result, the LinkNet model using pre-trained ResNet-34 as the encoder achieved 85.125 mIoU. Subsequent studies should focus on comparing the results of this study with those of studies using state-of-the-art object detection algorithms or semi-supervised learning-based Semantic Segmentation techniques. The results of this study can be applied to improve the speed of the existing map update process.

Estimates on the Long-term Landform Changes Near Sinduri Beaches (신두리 해빈 장기해안지형변화 탐지 및 추정)

  • Yun, Konghyun;Lee, Chang Kyung;Kim, Gyung Soo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1315-1328
    • /
    • 2022
  • Sinduri beach is a typical sedimentary landform that forms sand dunes due to the influence of the northwest wind in winter. Due to the its large scale and well-developed nature, it has been recognized for conservation value and is currently designated as Natural Monument No. 431, and continuous monitoring is required in terms of the preservation of topographical values. In this study, aerial images, drone images, and drone-based LiDAR data during 36 years were used for long-term topographical change observation of the Sinduri coastal sand dunes located in Taean-gun, Chungcheongnam-do. To implement this, the amount of change in elevation and volume for each period was calculated by applying the difference of Digital Elevation Model (DEM) based on raster calculation using the numerical elevation model generated from the raw data. Also, the amount of change in volume based on probability was calculated using the error propagation law for the intrinsic error of each data source. As a result, it can be seen that from 1986 to 2022, deposition of 35,119 m3 occurred in region of interest A (area: 17,960 m2) and 54,954 m3 of deposition occurred in region of interest B (area: 17,686 m2).

Positional Accuracy Analysis According to the Exterior Orientation Parameters of a Low-Cost Drone (저가형 드론의 외부표정요소에 따른 위치결정 정확도 분석)

  • Kim, Doo Pyo;Lee, Jae One
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.291-298
    • /
    • 2022
  • Recently developed drones are inexpensive and very convenient to operate. As a result, the production and utilization of spatial information using drones are increasing. However, most drones acquire images with a low-cost global navigation satellite system (GNSS) and an inertial measurement unit (IMU). Accordingly, the accuracy of the initial location and rotation angle elements of the image is low. In addition, because these drones are small and light, they can be greatly affected by wind, making it difficult to maintain a certain overlap, which degrades the positioning accuracy. Therefore, in this study, images are taken at different times in order to analyze the positioning accuracy according to changes in certain exterior orientation parameters. To do this, image processing was performed with Pix4D Mapper and the accuracy of the results was analyzed. In order to analyze the variation of the accuracy according to the exterior orientation parameters in detail, the exterior orientation parameters of the first processing result were used as meta-data for the second processing. Subsequently, the amount of change in the exterior orientation parameters was analyzed by in a strip-by-strip manner. As a result, it was proved that the changes of the Omega and Phi values among the rotation elements were related to a decrease in the height accuracy, while changes in Kappa were linked to the horizontal accuracy.

Analysis of Spatial Correlation between Surface Temperature and Absorbed Solar Radiation Using Drone - Focusing on Cool Roof Performance - (드론을 활용한 지표온도와 흡수일사 간 공간적 상관관계 분석 - 쿨루프 효과 분석을 중심으로 -)

  • Cho, Young-Il;Yoon, Donghyeon;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1607-1622
    • /
    • 2022
  • The purpose of this study is to determine the actual performance of cool roof in preventing absorbed solar radiation. The spatial correlation between surface temperature and absorbed solar radiation is the method by which the performance of a cool roof can be understood and evaluated. The research area of this study is the vicinity of Jangyu Mugye-dong, Gimhae-si, Gyeongsangnam-do, where an actual cool roof is applied. FLIR Vue Pro R thermal infrared sensor, Micasense Red-Edge multi-spectral sensor and DJI H20T visible spectral sensor was used for aerial photography, with attached to the drone DJI Matrice 300 RTK. To perform the spatial correlation analysis, thermal infrared orthomosaics, absorbed solar radiation distribution maps were constructed, and land cover features of roof were extracted based on the drone aerial photographs. The temporal scope of this research ranged over 9 points of time at intervals of about 1 hour and 30 minutes from 7:15 to 19:15 on July 27, 2021. The correlation coefficient values of 0.550 for the normal roof and 0.387 for the cool roof were obtained on a daily average basis. However, at 11:30 and 13:00, when the Solar altitude was high on the date of analysis, the difference in correlation coefficient values between the normal roof and the cool roof was 0.022, 0.024, showing similar correlations. In other time series, the values of the correlation coefficient of the normal roof are about 0.1 higher than that of the cool roof. This study assessed and evaluated the potential of an actual cool roof to prevent solar radiation heating a rooftop through correlation comparison with a normal roof, which serves as a control group, by using high-resolution drone images. The results of this research can be used as reference data when local governments or communities seek to adopt strategies to eliminate the phenomenon of urban heat islands.