• Title/Summary/Keyword: Drone Detection

Search Result 183, Processing Time 0.024 seconds

Anti-Drone Algorithm using GPS Sniffing (GPS 스니핑을 이용한 안티 드론 알고리즘)

  • Seo, Jin-Beom;Jo, Han-Bi;Song, Young-Hwan;Cho, Young-bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.63-66
    • /
    • 2019
  • Recently, as the technology of drones develops, a malicious attack using a drones becomes a problem, and an anti-drone technology for detecting an attack dron for a malicious attack is required. However, currently used drone detection systems are expensive and require a lot of manpower. Therefore, in this paper, we propose an anti - drone method using the analysis and algorithms of the anti - drone that can monitor the attack drones. In this paper, we identify and detect attack drones using sniffing, and propose capture and deception algorithm through spoofing using current GPS based detection system.

  • PDF

Collaborative Obstacle Avoidance Method of Surface and Aerial Drones based on Acoustic Information and Optical Image (음향정보 및 광학영상 기반의 수상 및 공중 드론의 협력적 장애물회피 기법)

  • Man, Dong-Woo;Ki, Hyeon-Seung;Kim, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1081-1087
    • /
    • 2015
  • Recently, the researches of aerial drones are actively executed in various areas, the researches of surface drones and underwater drones are also executed in marine areas. In case of surface drones, they essentially utilize acoustic information by the sonar and consequently have the local information in the obstacle avoidance as the sonar has the limitations due to the beam width and detection range. In order to overcome this, more global method that utilizes optical images by the camera is required. Related to this, the aerial drone with the camera is desirable as the obstacle detection of the surface drone with the camera is impossible in case of the existence of clutters. However, the dynamic-floating aerial drone is not desirable for the long-term operation as its power consumption is high. To solve this problem, a collaborative obstacle avoidance method based on the acoustic information by the sonar of the surface drone and the optical image by the camera of the static-floating aerial drone is proposed. To verify the performance of the proposed method, the collaborative obstacle avoidances of a MSD(Micro Surface Drone) with an OAS(Obstacle Avoidance Sonar) and a BMAD(Balloon-based Micro Aerial Drone) with a camera are executed. The test results show the possibility of real applications and the need for additional studies.

Deep-Learning-based Plant Anomaly Detection using a Drone (드론을 이용한 딥러닝 기반 식물 이상 탐지 시스템)

  • Lee, Jeong-Min;Lee, Yeong-Hun;Choi, Nam-Ki;Park, Heemin;Kim, Hyun-Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.94-98
    • /
    • 2021
  • As the world's population grows, the food industry becomes increasingly important. Among them, agriculture is an industry that produces stocks of people all over the world, which is very important food industry. Despite the growing importance of agriculture, however, a large number of crops are lost every year due to pests and malnutrition. So, we propose a plant anomaly detection system for managing crops incorporating deep learning and drones with various possibilities. In this paper, we develop a system that analyzes images taken by drones and GPS of the drone's movement path and visually displays them on a map. Our system detects plant anomalies with 97% accuracy. The system is expected to enable efficient crop management at low cost.

The Evolution of Drone and Air Defense Technologies: Implications for the Future Battlefield

  • Kim Seung-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.286-298
    • /
    • 2024
  • The rapid advancement of drone technology has significantly altered the landscape of modern warfare, presenting both opportunities and challenges for military forces worldwide. As drones become increasingly sophisticated, capable of performing complex missions such as reconnaissance, surveillance, and precision strikes, the development of effective air defense systems has become a critical priority. This study examines the current state of drone and air defense technologies, analyzing their impact on military strategies, tactics, and the future battlefield environment. By exploring the patterns of technological evolution, the limitations of existing air defense systems, and the potential consequences of drone proliferation, this research highlights the need for adaptive, innovative approaches to counter emerging threats. The findings underscore the importance of investing in advanced detection and interception capabilities, developing comprehensive counter-drone doctrines, and fostering international cooperation to address the ethical and legal challenges posed by the military use of drones. As the competition between drone and air defense technologies continues to intensify, policymakers and military leaders must proactively engage in shaping the future of warfare to ensure national security and stability in an increasingly complex world.

Drone-based Power-line Tracking System (드론 기반의 전력선 추적 제어 시스템)

  • Jeong, Jongmin;Kim, Jaeseung;Yoon, Tae Sung;Park, Jin Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.773-781
    • /
    • 2018
  • In recent years, a study of power-line inspection using an unmanned aerial vehicle (UAV) has been actively conducted. However, relevant studies have been conducting power-line inspection with an UAV operated by manual control, and they have developed just power-line detection algorithm on aerial images. To overcome limitations of existing research, we propose a drone-based power-line tracking system in this paper. The main contributions of this paper are to operate developed system under configured environment and to develop a power-line detection algorithm in real-time. Developed system is composed of the power-line detection and the image-based tracking control. To detect a power-line in real-time, a region of interest (ROI) image is extracted. Furthermore, clustering algorithm is used in order to discriminate the power-line from background. Finally, the power-line is detected by using the Hough transform, and a center position and a tilt angle are estimated by using the Kalman filter to control a drone smoothly. We design a position controller and an attitude controller for image-based tracking control, and both controllers are designed based on the proportional-derivative (PD) control method. The interaction between the position controller and the attitude controller makes the drone track the power-line. Several experiments were carried out in environments where conditions are similar to actual environments, which demonstrates the superiority of the developed system.

Smart Target Detection System Using Artificial Intelligence (인공지능을 이용한 스마트 표적탐지 시스템)

  • Lee, Sung-nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.538-540
    • /
    • 2021
  • In this paper, we proposed a smart target detection system that detects and recognizes a designated target to provide relative motion information when performing a target detection mission of a drone. The proposed system focused on developing an algorithm that can secure adequate accuracy (i.e. mAP, IoU) and high real-time at the same time. The proposed system showed an accuracy of close to 1.0 after 100k learning of the Google Inception V2 deep learning model, and the inference speed was about 60-80[Hz] when using a high-performance laptop based on the real-time performance Nvidia GTX 2070 Max-Q. The proposed smart target detection system will be operated like a drone and will be helpful in successfully performing surveillance and reconnaissance missions by automatically recognizing the target using computer image processing and following the target.

  • PDF

Probability-Based Target Search Method by Collaboration of Drones with Different Altitudes (고도를 달리하는 드론들의 협력에 의한 확률기반 목표물 탐색 방법)

  • Ha, Il-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2371-2379
    • /
    • 2017
  • For the drone that is active in a wide search area, the time to grasp the target in the field of applications such as searching for emergency patients, monitoring of natural disasters requiring prompt warning and response, that is, the speediness of target detection is very important. In the actual operation of drone, the time for target detection is highly related to collaboration between drones and search algorithm to efficiently search the navigation area. In this research, we will provide a search method with cooperation of drone based on target existence probability to solve the problem of quickness in drone target search. In particular, the proposed method increases the probability of finding a target and shorten the search time by transmitting high-altitude drone search results to a low-altitude drone after searching first and performing more precise search. We verify the performance of the proposed method through several simulations.

A Study on detection of missing person using DRONE and AI (드론과 인공지능을 활용한 실종자 탐색에 관한 연구)

  • Kyoung-Mok Kim;Ho-beom Jeon;Geon-Seon Lim
    • Journal of the Health Care and Life Science
    • /
    • v.10 no.2
    • /
    • pp.361-367
    • /
    • 2022
  • This study provides several methods to minimize dead zone and to detect missing person using combined DRONE and AI especially called 4 th Industrial Revolution. That is composed of image acquisition for a person who is in needed of support. The procedure is DRONE that is made of image acquisition and transfer system. after that can be shown GPS information. Currently representative AI algorithm is YOLO (You Only Look Once) that can be adopted to find manikin or real image by learning with dataset. The output was reached in reliable and efficient results. As the trends of DRONE is expanded widely that will provide various roll. This paper was composed of three parts. the first is DRONE specification, the second is the definition of AI and procedures, the third is the methods of image acquisition using DRONE, the last is the future of DRONE with AI.

Detection of Ecosystem Distribution Plants using Drone Hyperspectral Spectrum and Spectral Angle Mapper (드론 초분광 스펙트럼과 분광각매퍼를 적용한 생태계교란식물 탐지)

  • Kim, Yong-Suk
    • Journal of Environmental Science International
    • /
    • v.30 no.2
    • /
    • pp.173-184
    • /
    • 2021
  • Ecological disturbance plants distributed throughout the country are causing a lot of damage to us directly or indirectly in terms of ecology, economy and health. These plants are not easy to manage and remove because they have a strong fertility, and it is very difficult to express them quantitatively. In this study, drone hyperspectral sensor data and Field spectroradiometer were acquired around the experimental area. In order to secure the quality accuracy of the drone hyperspectral image, GPS survey was performed, and a location accuracy of about 17cm was secured. Spectroscopic libraries were constructed for 7 kinds of plants in the experimental area using a Field spectroradiometer, and drone hyperspectral sensors were acquired in August and October, respectively. Spectral data for each plant were calculated from the acquired hyperspectral data, and spectral angles of 0.08 to 0.36 were derived. In most cases, good values of less than 0.5 were obtained, and Ambrosia trifida and Lactuca scariola, which are common in the experimental area, were extracted. As a result, it was found that about 29.6% of Ambrosia trifida and 31.5% of Lactuca scariola spread in October than in August. In the future, it is expected that better results can be obtained for the detection of ecosystem distribution plants if standardized indicators are calculated by constructing a precise spectral angle standard library based on more data.

Development of Animal Tracking Method Based on Edge Computing for Harmful Animal Repellent System. (엣지컴퓨팅 기반 유해조수 퇴치 드론의 동물 추적기법 개발)

  • Lee, Seul;Kim, Jun-tae;Lee, Sang-Min;Cho, Soon-jae;Jeong, Seo-hoon;Kim, Hyung Hoon;Shim, Hyun-min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.224-227
    • /
    • 2020
  • 엣지컴퓨팅 기반 유해조수 퇴치 Drone의 유해조수 추적 기술은 Doppler Sensor를 이용해 사유지에 침입한 유해조수를 인식 후 사용자에게 위험 요소에 대한 알림 서비스를 제공한다. 이후 사용자는 Drone의 Camera와 전용 애플리케이션을 이용해 경작지를 실시간으로 보며 Drone을 조종한다. Camera는 Tensor Flow Object Detection Deep Learning을 적용하여 유해조수를 학습 및 파악, 추적한다. 이후 Drone은 Speaker와 Neo Pixel LED Ring을 이용해 유해조수의 시각과 청각을 자극해 도망을 유도하며 퇴치한다. Tensor Flow object detection을 핵심으로 Drone에 접목했고 이를 위해 전용 애플리케이션을 개발했다.