• Title/Summary/Keyword: Drone Communication

Search Result 208, Processing Time 0.036 seconds

Design and Implementation of Wi-Fi based Drone to Save People in Maritime (해상 인명구조를 위한 무선랜기반 드론 설계 및 구현)

  • Kim, Dong Hyun;Shin, Jae Ho;Kim, Jong Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.53-60
    • /
    • 2017
  • This paper is to design and implement the drone that supports a wideband multimedia communication and a long-range to save people in maritime. The drone is an Unnamed Aerial Vehicle (UAV) that is controlled by a radio wave not by people boarding the machine. We use the drone to respond quickly to the boating accident. To develop a smart drone for the high speed seamless video streaming in a long-range maritime, a necessary techniques are hardware design techniques that design structure of a drone, controlling techniques that operate a drone and communication techniques that control a drone in a long distance. In this paper, the limitations and techniques to design and implement the structure of drone supporting wideband multimedia communication for long-range maritime are explained. By expanding this communication drone network, it is aimed at improving utility of a drone.

Implementation of Multi-channel Communication System for Drone Swarms Control (군집 드론의 동시제어를 위한 멀티채널 송신 시스템 구현)

  • Lee, Seong-Ho;Han, Kyong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.179-185
    • /
    • 2017
  • Communication technologies hold a significant place in the swarm flight of drones for surveillance, inspection of disasters and calamities, entertainment performances, and drone collaborations. A GCS(ground control station) for the control of drone swarms needs its devoted communication method to control a large number of drones at the same time. General drone controllers control drones by connecting transmitters and drones in 1:1. When such an old communication method is employed to control many drones simultaneously, problems can emerge with the control of many transmitter modules connected to a GCS and frequency interference among them. This study implemented a transmitter controller to control many drones simultaneously with a communication chip of 2.4GHz ISM band and a Cortex M4-based board. It also designed a GCS to control many transmitter controllers via a network. The hierarchical method made it possible to control many more drones. In addition, the problem with frequency interference was resolved by implementing a time- and frequency-sharing method, controlling many drones simultaneously, and adding the frequency hopping feature. If PPM and S.BUS protocol features are added to it, it will be compatible with more diverse transmitters and drones.

A Study on Movement Control of Drone using Reference Posture Mapping (기준 자세 맵핑을 이용한 드론의 동작 제어에 관한 연구)

  • Kim, Jang-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.461-466
    • /
    • 2021
  • Drone can be controlled by the method such as Bluetooth communication for close distance and can be controlled through network communication for long distance. Especially, the coordinate is set using GPS and drone is controlled using network communication and video communication when the activity range is long distance. However, the drone should be controlled by receiving control authority accordingly in response about it appropriately when the drone leaves the control area after arriving at the destination if there is a problem with network communication and video communication. So, this study proposes a method to control a drone with a simple mutually promised simple gesture and the drone can be controlled in the proposed method even if the drone leaves from the control authority in above situation. The reference posture was established for mutually promised simple gesture algorithm and automatically handed over the control authority of drone to a person who takes the reference posture when the drone recognizes it to implement this. And all the movements of the drone could be controlled by starting the beginning of all commands from the reference posture (The hovering posture of the drone). Lastly, the control authority of the drone should be returned after achieving the purpose, and the algorithm was implemented to make the drone can perform next action of its own, and it was confirmed that the drone was operating normally by the mapped instruction.

A study of Location based Air Logistics Systems with Light-ID and RFID on Drone System for Air Cargo Warehouse Case

  • Baik, Nam-Jin;Baik, Nam-Kyu;Lee, Min-Woo;Cha, Jae-Sang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.31-37
    • /
    • 2017
  • Recently Drone technology is emerging as an alternative new way of distribution systems services. Amazon, Google which are global network chain distribution companies are developing an idea of Drone based delivery service and applied for patent for Drone distribution systems in USA. In this paper, we investigate a way to adopt Drone system to Air Cargo logistics, in particular, drone system based on combination of Light ID and RFID technology in the management procedure in stock warehouse. Also we explain the expected impact of Drone systems to customs declaration process. In this paper, we address the investigated limitations of Drone by the Korean Aviation Act as well as suggest the directions of future research for application of Drone to Air logistics industry with investigated limitations.

Real-time Tele-operated Drone System with LTE Communication (LTE 통신을 이용한 실시간 원격주행 드론 시스템)

  • Kang, Byoung Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.35-40
    • /
    • 2019
  • In this research, we suggest a real-time tele-driving system for unmanned drone operations using the LTE communication system. The drone operator is located 180km away and controls the altitude and position of the drone with a 50ms time delay. The motion data and video from the drone is streamed to the operator. The video is played on the operator's head-mounted display (HMD) and the motion data emulates the drone on the simulator for the operator. In general, a drone is operated using RF signal and the maximum distance for direct control is limited to 2km. For long range drone control over 2km, an auto flying mode is enabled using a mission plan along with GPS data. In an emergency situation, the autopilot is stopped and the "return home" function is executed. In this research, the immersion tele-driving system is suggested for drone operation with a 50ms time delay using LTE communication. A successful test run of the suggested tele-driving system has already been performed between an operator in Daejeon and a drone in Inje (Gangwon-Do) which is approximately 180km apart.

Anti-Drone Technology for Drone Threat Response: Current Status and Future Directions

  • Jinwoo Jeong;Isaac Sim;Sangbom Yun;Junghyun Seo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.115-127
    • /
    • 2023
  • In this paper, we have undertaken a comprehensive investigation into the current state of anti-drone technology due to the increasing concerns and risks associated with the widespread use of drones. We carefully analyze anti-drone technology, dividing it into three crucial domains: detection, identification, and neutralization methods. This categorization enables us to delve into intricate technical details, highlighting the diverse techniques used to counter evolving drone threats. Additionally, we explore the legal and regulatory aspects of implementing anti-drone technology. Our research also envisions potential directions for advancing and evolving anti-drone tech to ensure its effectiveness in an ever-changing threat environment.

A study for controlling indoor Networked Drone based on BLE Beacon (BLE Beacon을 이용한 실내 Networked Drone의 제어기술에 대한 연구)

  • Kim, Soohyuk;Jeong, Dongeon;Kim, Yunho;Park, Yechan;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.837-838
    • /
    • 2016
  • 최근 IoT 기술의 발전과 함께 스마트홈 기술의 발달과 Drone을 사용하는 사용자가 꾸준히 늘어나고 있는 추세이다. 스마트홈 시스템의 보안카메라는 정해진 구역을 모니터링 할 수 밖에 없다는 단점을 가지고 있다. 이러한 한계를 극복하고자, 본 논문에서는 사용자가 입력한 목적지로 실내에 미리 배치된 Drone이 이동하여 해당 목적지를 비춰줄 수 있도록 실내 보안카메라 기술을 Drone으로 대체할 수 있는 방법을 제안한다. 목적지를 인식하기 위해 실내에 위치한 Drone과 목적지의 위치값을 알아야 한다. 실내에선 GPS 좌표값을 알 수 없기 때문에 BLE Beacon이 발생시키는 신호를 이용하여 상호간의 통신을 통해 위치, 거리를 계산하도록 한다. 이러한 방식을 적용시킨다면 매번 모니터링이 필요한 구역에 새로 보안카메라를 설치하거나 배선공사하는 불편함 없이 하나의 Drone 하드웨어를 이용한 전방위 모니터링이 가능해 질 것으로 기대한다.

Communication and Security Technology Trends in Drone-assisted Wireless Sensor Network (드론 기반 무선 센서 네트워크의 통신 및 보안 기술 동향)

  • Wang, G.;Lee, B.;Ahn, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.3
    • /
    • pp.55-64
    • /
    • 2019
  • In drone-assisted wireless sensor networks, drones collect data from sensors in an energy-efficient manner and quickly distribute urgent information to sensor nodes. This article introduces recent communication and security schemes for drone-assisted wireless sensor networks. For the communication schemes, we introduce data collection optimization schemes, drone position and movement optimization schemes, and drone flight path optimization schemes. For the security schemes, we introduce authentication and key management schemes, cluster formation schemes, and cluster head election schemes. Then, we present some enhancement methodologies for these communication and security schemes. As a conclusion, we present some interesting future work items.

3 Dimensional Augmented Reality Flight for Drones

  • Park, JunMan;Kang, KiBeom;Jwa, JeongWoo;Won, JoongHie
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.13-18
    • /
    • 2018
  • Drones are controlled by the remote pilot from the ground stations using the radio control or autonomously following the pre-programmed flight plans. In this paper, we develop a method and an optimal path search system for providing 3D augmented reality flight (ARF) images for safe and efficient flight control of drones. The developed system consisted of the drone, the ground station and user terminals, and the optimal path search server. We use the Dijkstra algorithm to find the optimal path considering the drone information, flight information, environmental information, and flight mission. We generate a 3D augmented reality flight (ARF) image overlaid with the path information as well as the drone information and the flight information on the flight image received from the drone. The ARF image for adjusting the drone is generated by overlaying route information, drone information, flight information, and the like on the image captured by the drone.

Development of Anti-Drone in Korea at the Center of Drone War (드론 전쟁의 중심에 있는 국내 안티드론 개발 현황)

  • Soon-Chai Jung;Byung-Kyu Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.163-169
    • /
    • 2024
  • Anti-drone (anti-drone) is at the center of the debate over the failure to shoot down a North Korean drone that invaded the metropolitan area at the end of 2022. Anti-drone is a means of detecting and restraining drone flights in unauthorized airspace. Anti-drone technology is a key defense system for drone technology that is essential in the current illegal situation of various drones. We must be alert in the war in Ukraine, where the role of drones has increased. Drone attacks, which are not easy to defend, may determine the victory or defeat of the war. Competition for anti-drone technology development in countries around the world will rise. When new anti-drone technology emerges, drones that go beyond it will be developed. This study presented the current status of anti-drone by analyzing the defense system of domestic drones.