• Title/Summary/Keyword: Driving-will force

Search Result 149, Processing Time 0.03 seconds

힘 보조형 전동 휠체어를 위한 구동 의지 제어 시스템 개발 (Development of the Driving-will Control System for a Power-assisted Electric Wheelchair)

  • 공정식;이보희
    • 한국산학기술학회논문지
    • /
    • 제13권3호
    • /
    • pp.1296-1301
    • /
    • 2012
  • 본 논문은 힘 보조형 휠체어에 있어 사용자의 구동 의지력을 측정하고 이를 통해 사용자의 구동 의지에 따른 휠체어 구동 제어를 수행할 수 있는 시스템 개발에 관한 논문이다. 최근 고령자의 증가에 따른 다양한 편의 기구가 증가되고 있으며 이에 따라 휠체어에 대한 관심이 증가되고 있다. 특히 힘 보조형 휠체어의 경우 기존의 전동 휠체어가 갖고 있는 운동 부족 등의 문제점을 해결할 수 있도록 고안된 휠체어이다. 본 논문에서는 이러한 힘 보조형 휠체어에 있어 사용자의 구동 의지력을 측정할 수 있는 센서를 제안하였고 이를 통해 사용자의 구동 의지력에 따른 휠체어 제어를 수행하였으며 이를 실험을 통해 검증하였다.

Theoretical Results for a Dipole Plasmonic Mode Based on a Forced Damped Harmonic Oscillator Model

  • Tongtong Hao;Quanshui Li
    • Current Optics and Photonics
    • /
    • 제7권4호
    • /
    • pp.449-456
    • /
    • 2023
  • The localized surface-plasmon resonance has drawn great attention, due to its unique optical properties. In this work a general theoretical description of the dipole mode is proposed, using the forced damped harmonic oscillator model of free charges in an ellipsoid. The restoring force and driving force are derived in the quasistatic approximation under general conditions. In this model, metal is regarded as composed of free charges and bound charges. The bound charges form the dielectric background which has a dielectric function. Those free charges undergo a collective motion in the dielectric background under the driving force. The response of free charges will not be included in the dielectric function like the Drude model. The extinction and scattering cross sections as well as the damping coefficient from our model are verified to be consistent with those based on the Drude model. We introduce size effects and modify the restoring and driving forces by adding the dynamic depolarization factor and the radiation damping term to the depolarization factor. This model provides an intuitive physical picture as well as a simple theoretical description of the dipole mode of the localized surface-plasmon resonance based on free-charge collective motion.

슬라이딩 섭동 관측기를 이용한 수술용 로봇 인스트루먼트의 반력 추정 가능성 평가 (Evaluation of a Possibility of Estimation of Reaction Force of Surgical Robot Instrument using Sliding Perturbation Observer)

  • 윤성민;이민철;김지언;강병호
    • 로봇학회논문지
    • /
    • 제7권1호
    • /
    • pp.20-28
    • /
    • 2012
  • In spite of the difficulties and uncertain characteristic of cable driven method, surgical robot instrument has adopted it as driving mechanism for various reasons. To overcome the problem of cable system, previous research applied SMCSPO (sliding mode control with sliding perturbation observer) algorithm as robust controller to control the instrument and found that the value of SPO (sliding perturbation observer) followed force disturbance, reaction force loaded on the tip very similarly. Thus, this paper confirms that the perturbation observer is sufficient estimator which finds out the mount of loaded force on the surgical robot instrument. To prove the proposition, simulation using the similar model with an actual instrument and experimental evaluation are performed. The results show that it is possible to substitute SPO for sensors to measure the reaction force. This estimated reaction force will be used to realize haptic function by sending the reaction force to a master device for a surgeon. The results will contribute to create surgical benefit such as shortening the practice time of a surgeon and giving haptic information to surgeon by using it as haptic signal to protect an organ by making force boundary.

회전 트로웰의 원판형 가정을 통한 콘크리트 미장로봇의 전방향 운동 모델링 (Omni-Directional Motion Modeling of Concrete Finishing Trowel Robot with Circular Trowels)

  • 신동헌;김호중
    • 제어로봇시스템학회논문지
    • /
    • 제5권4호
    • /
    • pp.454-461
    • /
    • 1999
  • A concrete floor trowel machine, developed in the U.S in 1990's, consists of only two rotary trowels, and doesn't need any other mechanism for motion such as wheels. When the machine flattens a concrete floor with its rotary trowels, the machine can move in any direction by utilizing the unbalanced friction forces occurring between the rotary wheels and the floor when the trowels are tilted in appropriate directions. In order to automate the trowels machine, this paper proposed the self-propulsive concrete finishing trowel robot which has twin trowels. For the control of the robot, this paper discussed the following. Firstly, the dynamics model of the driving frictional force applied on each trowel from the floor is derived. Secondly, the relationship between the driving force for the robot and the control variable of the robot is derived. Finally, the basic motion of the robot are realized by using the obtained relationship. This paper figures out how the concrete floor finishing robot with tow trowels moves and will contribute to realizing it.

  • PDF

Practical Study about Obstacle Detecting and Collision Avoidance Algorithm for Unmanned Vehicle

  • Park, Eun-Young;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.487-490
    • /
    • 2003
  • In this research, we will devise an obstacle avoidance algorithm for a previously unmanned vehicle. Whole systems consist mainly of the vehicle system and the control system. The two systems are separated; this system can communicate with the vehicle system and the control system through wireless RF (Radio Frequency) modules. These modules use wireless communication. And the vehicle system is operated on PIC Micro Controller. Obstacle avoidance method for unmanned vehicle is based on the Virtual Force Field (VFF) method. An obstacle exerts repulsive forces and the lane center point applies an attractive force to the unmanned vehicle. A resultant force vector, comprising of the sum of a target directed attractive force and repulsive forces from an obstacle, is calculated for a given unmanned vehicle position. With resultant force acting on the unmanned vehicle, the vehicle's new driving direction is calculated, the vehicle makes steering adjustments, and this algorithm is repeated.

  • PDF

터빈로터 중심공 검사용 자기주행 공압형 로봇 개발 (Development of Self-Driven Pneumatic Robot for Boresonic Examination of Turbine Rotor)

  • 강배준;안명재;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권1호
    • /
    • pp.31-38
    • /
    • 2021
  • This study presents a new principle for driving the robot aimed at reducing the position error for the boresonic examination of turbine rotor. The conventional method of inspection is performed by installing manipulator onto the flange of the turbine rotor and connecting a pipe, which is then being pushed into the bore. The longer the pipe gets, the greater sagging and distortion appear, making it difficult for the ultrasonic sensor to contact with the internal surface of the bore. A pneumatic pressure will ensure the front or rear feet of the robot in close contact with the inner wall to prevent slipping, while the ball screw on the body of the robot will rotate to drive it in the axial direction. The compression force required for tight contact was calculated in the form of a three-point support, and a static structural simulation analysis was performed by designing and modeling the robot mechanism. The driving performance and ultrasonic detection ability have been tested by fabricating the robot, the test piece for ultrasonic calibration and the transparent mock-up for robot demonstration. The tests have confirmed that no slipping occurs at a certain pneumatic pressure or over.

경사 전극 배열을 이용한 고밀도 하드 디스크의 마이크로 구동부 제작 (A Microcatuator for High-Density Hard Disk Drive Using Skewed Electrode Arrays)

  • 최석문;박성준
    • 융복합기술연구소 논문집
    • /
    • 제1권2호
    • /
    • pp.6-15
    • /
    • 2011
  • This paper reports the design and fabrication of a micro-electro-mechanical-system(MEMS)-based electrostatic angular microactuator for a dual-stage servo. The proposed actuator employs a novel electrode pattern named "skewed electrode array(SEA)" scheme. It is shown that SEA has better linearity than a parallel plate type actuator and stronger force than a comb-drive based actuator. The moving and the fixed electrodes are arranged to make the driving force perpendicular to the rotating moment of arm. By changing the electrode overlap length, the magnitude of electrostatic force and stable displacement will be changed. In order to optimize the design, an electrostatic FE analysis was carried out and an empirical force model was established for SEA. A new assembly method which will allow the active electrodes to be located beneath the slider was developed. The active electrodes are connected by inner and outer rings lifted on the base substrate, and the inner and outer rings are connected to platform on which the slider locates. Electrostatic force between active electrodes and platform can be used for exiting out of plane modes, so this provides the possibility of the flying height control. A microactuator that can position the pico-slider over ${\pm}0.5{\mu}m$ using under 20 volts for a 2 kHz fine-tracking servo was designed and fabricated using SoG process.

  • PDF

힘 보조형 스마트 휠체어를 위한 차량 제어 알고리즘 구현 (Study on the Aid Control Algorithm for the Power-Assisted Smart Wheelchair)

  • 공정식
    • 한국산학기술학회논문지
    • /
    • 제12권8호
    • /
    • pp.3360-3365
    • /
    • 2011
  • 본 논문은 힘 보조형 휠체어에 있어 힘 센서 없이 사용자의 구동 의지를 측정하는 방법과 이를 통한 차량제어 방법을 제시한다. 이를 위해 먼저 모터의 수학적 모델을 이용하여 사용자의 구동 의지력을 추정하는 알고리즘을 도출한다. 이후 도출된 외력을 기반으로 사용자가 원하는 차량 속도 및 방향을 추정한다. 이를 토대로 차량의 이동량을 결정하고 차량이 이에 따라 구동되도록 알고리즘을 구성하였으며 이를 시뮬레이션을 통해 검증하였다.

다중 DC모터를 이용한 역감처리 (Force Display Processing using Multiple DC motors)

  • 강원찬;김동옥;김원배;신석두;김영동
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.183-188
    • /
    • 2001
  • In this paper, we have developed a new Force-Display system using tendon-driven method based multiple DC motors. The proposed system is based on the HIR Lab Haptic library, which calculates the real position and renders the reflecting force data to device rapidly. The system is composed of device based tendon- driving method, high-speed controller and Haptic rendering library. The developed system will be used on constructing the dynamical virtual environment. To show the efficiency of our system, we designed simulation program, which an display the moving force (attaching, grabbing, rotating) on two virtual points. As the result of the experiment, our proposed system shows much higher resolution than any others.

  • PDF

경사 전극 배열을 이용한 각도방향 마이크로 구동부 제작 (Skewed Electrode Array(SEA) and Its Application as an Angular Microactuator)

  • 최석문;박성준
    • 융복합기술연구소 논문집
    • /
    • 제1권2호
    • /
    • pp.16-24
    • /
    • 2011
  • The angular electrostatic microactuator using skewed electrode array (SEA) scheme was proposed. The moving and fixed electrodes are arranged to make the driving force perpendicular to the rotating moment of arm. By changing the electrode overlap length, the magnitude of electrostatic force and stable displacement will be changed. In order to optimize the design, electrostatic FE analysis were carried out and the empirical force model was established for SEA. Simulation was performed to make the comparison between conventional actuators and SEA. The proposed SEA generates actuating torque 2 times greater than a comb-drive and stable actuator displacement 40% greater than a parallel plate type actuator. The angular electrostatic microactuator using skewed SEA scheme was designed and fabricated using SoG process.

  • PDF