• Title/Summary/Keyword: Driving mode

Search Result 752, Processing Time 0.031 seconds

Experimental Study on Natural Gas Conversion Vehicle(1) - Fuel Economy, Emission and Roadability (천연가스 개조 승용차에 대한 실험적 연구(1) - 연비, 배기 및 주행 성능)

  • Kim, Hyung-Gu;Kim, Inok;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.410-419
    • /
    • 2015
  • In this study, the roadability, fuel economy and emission characteristics were evaluated for a natural gas converted vehicle. The results are as follows; Not only the shortage of power was observed in stall test, but also large deterioration of acceleration performance was exposed in roadability. Compared to the original LPG system, the acceleration is 76% in start acceleration and 45 ~ 65% in overtaking acceleration, especially the decline became larger when air conditioner is at work. Furthermore, because the mapping data, which controls the injection depending on driving condition, do not match up with injection system, the failure of air-fuel ratio feedback control occurs resulting from the large gap between the required and the really supplied amount of fuel. This failure cause the exhaust gas to emit without catalytic conversion and the fuel economy based on the fuel heat value to get worse 22% in the mode test and 16% in road test respectively. In addition, the existing injection system does not secure enough fuel at the starting so that it may lead to the fail of clod start, the deterioration of hot start and inharmonic of engine at the idle after start.

Development of a Large Capacity Hybrid-Type Linear Motor Damper for the vibration Control of Building Structures (건축 구조물의 진동 제어용 하이브리드형 대용량 리니어 모터 댐퍼의 개발)

  • Jeong, Sang-Seop;Jang, Seok-Myeong;Lee, Seong-Ho;Yun, In-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.601-611
    • /
    • 2002
  • As resent trends in structural construction have been to build taller and larger structures than any time in the past, they have had high flexibility and low damping that can cause large vibration response under severe environmental loading such as earthquakes, winds, and mechanical excitations. The damper with mass and sqring is one aproach to safeguarding the structure against excessive vibrations. In this paper, a large capacity hybrid-type linear motor damper(LMD) was designed and fabricated for the application to the vibration control of a large building structure model. It has been designed to be able to move the damper mass, 1,500 kg up to ${\pm}250mm$ strokes at the first mode natural frequency of the building structure model, ${\pm}0.51Hz$. Linear motor is consisted of the fixed coil and the movable NdFeB permanent magnets field part. The PM field part composed magnet modules and iron yoke, is the damper mass itself, 1500kg. LMD therefore has a simplified structure and requires a few elements in the driving system, being compared with a rotary motor damper and a hydraulic damper. However, the manufacture of large PM linear actuator is difficult because of the limit of PM size and the attraction and repulsion at the assembly of PM. Therefore, large damper system is manufactured and tested for dynamic characteristics and frequency response.

The Effect of Insulating Material on WLCSP Reliability with Various Solder Ball Layout (솔더볼 배치에 따른 절연층 재료가 WLCSP 신뢰성에 미치는 영향)

  • Kim, Jong-Hoon;Yang, Seung-Taek;Suh, Min-Suk;Chung, Qwan-Ho;Hong, Joon-Ki;Byun, Kwang-Yoo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2006
  • A major failure mode for wafer level chip size package (WLCSP) is thermo-mechanical fatigue of solder joints. The mechanical strains and stresses generated by the coefficient of thermal expansion (CTE) mismatch between the die and printed circuit board (PCB) are usually the driving force for fatigue crack initiation and propagation to failure. In a WLCSP process peripheral or central bond pads from the die are redistributed into an area away using an insulating polymer layer and a redistribution metal layer, and the insulating polymer layer affects solder joints reliability by absorption of stresses generated by CTE mismatch. In this study, several insulating polymer materials were applied to WLCSP to investigate the effect of insulating material. It was found that the effect of property of insulating material on WLCSP reliability was altered with a solder ball layout of package.

  • PDF

A Study on the Construction of Littman and Littrow Type Tunable Diode Laser Systems (Littman 및 Littrow 타입 파장가변 반도체 레이저의 제작에 관한 연구)

  • Baek, Woon-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.273-277
    • /
    • 2006
  • In this paper, we constructed the Littman type and fixed Littrow type tunable external-cavity diode laser systems. The laser output, which is the 0th-order diffracted beam from the diffraction grating in an external cavity, was the single longitudinal mode. Its FWHM was measured as less than 9MHz. With the diode driving current of 140mA and operating temperature of $25^{\circ}C$, the coarse tuning range of 5.375nm was measured for the Littman type, and of 13.65nm was measured for the fixed Littrow type. A fine tuning experiment in which an external mirror was rotated by a PZT driven by a sawtooth wave was performed, and its tuning range of 0.042nm was measured for both types. The fixed Littrow type tunable external-cavity diode laser system was an improvement on the conventional Littrow type tunable laser system in which the output direction varies due to the grating embedded in the mirror plate.

Estimation of Dynamic Response of Advanced Composite Material Decks for Bridges Application under Various Vehicle Driving Velocities (복합재료 교량 바닥판의 주행속도에 따른 동적응답 평가)

  • 천경식;장석윤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.23-32
    • /
    • 2003
  • Applications of advanced composite material in construction field are tending upwards and development of all composite material bridges is making progress rapidly in home and abroad due to their high strength to weight ratio. This paper formulated the dynamic responses of the laminated composite structures subjected to moving load and analyzed the various dynamic behaviors using the finite element method. The nondimensionalized natural frequencies of a simply supported square-laminated composite plate are considered for verifications. Mode superposition and Newmark direct integration method are applied for moving load analysis. For structural models, dynamic magnification factor calculated for various velocities of the moving load and displacements characteristics of laminated composite structures due to the moving load are investigated theoretically Numerical results are presented to study the effects of lamination scheme, stacking sequence, and fiber angle for laminated composite structures during moving load. The various results on moving load and lamination through numerical analysis will present an important basic data for development and grasp the behavior of all composite material bridges.

The characteristics of source/drain structure for MOS typed device using Schottky barrier junction (Schottky 장벽 접합을 이용한 MOS형 소자의 소오스/드레인 구조의 특성)

  • 유장열
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.1
    • /
    • pp.7-13
    • /
    • 1998
  • The VLSI devices of submicron level trend to have a lowering of reliability because of hot carriers by two dimensional influences which are caused by short channel effects and which are not generated in a long channel devices. In order to minimize the two dimensional influences, much research has been made into various types of source/drain structures. MOS typed tunnel transistor with Schottky barrier junctions at source/drain, which has the advantages in fabrication process, downsizing and response speed, has been proposed. The experimental device was fabricated with p type silicon, and manifested the transistor action, showing the unsaturated output characteristics and the high transconductance comparing with that in field effect mode. The results of trial indicate for better performance as follows; high doped channel layer to lower the driving voltage, high resistivity substrate to reduce the leakage current from the substrate to drain.

  • PDF

Development of a Series Hybrid Propulsion System for Bimodal Tram (바이모달 트램용 직렬형 하이브리드 추진시스템 개발)

  • Bae, Chang-Han;Lee, Kang-Won;Mok, Jai-Kyun;You, Doo-Young;Bae, Jong-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.494-502
    • /
    • 2011
  • Bimodal tram is designed to run on a dedicated path in automatic mode using a magnetic track system in order to realize a combination of the accessibility of a bus and the constant regularity of a railroad. This paper presents design and test results of the series hybrid propulsion system of the bimodal tram on both test track and public road, which uses CNG (Compressed Natural Gas) engine and Lithium polymer battery pack. This paper describes the real-time data measuring equipment for the series hybrid propulsion system of the bimodal tram. Using this measurement equipment, the performance of the prototype vehicle's driving on test track and public road was verified and the fuel consumption and the efficiency of CNG engine have been investigated.

Effect of Passenger Car Fuel Consumptions and Fuel Cost Savings by Hi-Pass System (하이패스 이용시 승용차 연료소모 및 연료비용 절감효과)

  • Kwak, Jin-Ho;Kim, Dong-Nyong;Jeong, Ae-Ra
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.1
    • /
    • pp.94-102
    • /
    • 2015
  • The high-pass(brand name of Electronic Toll Collection System) utilization trend on the highway continues to grow as 59.4% (by the end of 2013). In this study, we applied the carbon balance method using a fuel chassis dynamometer with the four passenger car classes in order to measure the fuel consumption of the car using the expressway tollgate. We experimented 18 driving mode at general tollgate and high-pass tollgate. As a result, in case of entry/exit toll there were 21.0~56.4ml/veh fuel consumption savings, in case of open toll fuel consumption savings was analyzed as 10.5~28.1ml/veh. In addition, the annual fuel cost savings by virtue of high-pass was 28.2~57.3 billion won at 70% utilization rate, 32.2~65.5 billion won at 80%, 36.2~73.7 billion won at 90% and 40.3~81.9 billion won at 100%.

Failure analysis of capacitor for sub-module in HVDC (HVDC 서브모듈용 커패시터의 고장 분석)

  • Kang, Feel-soon;Song, Sung-Geun
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.941-947
    • /
    • 2018
  • In general, capacitors have a large influence on the life of the system due to frequent charging and discharging. In this paper, we analyze the cause of the core failure of high voltage, high current HVDC sub-module film capacitor and analyze the precautions of the capacitor design and manufacturing process. First, the cause of the fault, the failure mode, and the effect are analyzed through the FMEA of the capacitor. To quantitatively evaluate the causes and effects of faults that have the greatest effect on the failure of a capacitor, a fault tree for the capacitor is presented and the failure rate is analyzed according to the design parameters and the driving conditions. It is verified that the main cause of capacitor failure is the capacitance change, and it is necessary to minimize the temperature rise, corona occurrence, electrode expansion, and insulation distance decrease during capacitor design and manufacturing process in order to reduce the failure rate of the capacitor.

A Study on the Electrical and Heat Generation Characteristics of an Induction Motor under Restrained Operation (유도전동기의 구속운전에 따른 전기 및 발열 특성 연구)

  • Jong-Chan Lee;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.1
    • /
    • pp.25-33
    • /
    • 2023
  • In this study, we determined the failure rate and fire status of electric motors widely used in domestic and industrial devices and analyzed the associated fire risks by identifying the electrical and temperature characteristics of electric motors under the normal and restrained operation modes in industrial sites and laboratories. A 2.2kW motor used for driving a conveyor during the vulcanization process in a rubber product manufacturing plant was employed as the study object and was exposed to a high- temperature environment as this motor is widely used in industrial sites. The current amplitude was 4.45-4.50 A during normal operation and 38.2-41.5 A during restrained operation due to the pinching of products and semi-finished products (i.e., 8.5 times higher than that during normal operation). The leakage current amplitude was 0.33 mA during both operation modes. The temperature of the workplace in summer was 42.38℃, indicating a poor environment for the installed motor. In the laboratory, the current and temperature of the coil inside a 3.7kW motor were measured under the restrained operation mode as performing measurements of the coil inside the motor in industrial sites is challenging. The current amplitude during normal operation was 3.5 A, whereas that during restrained operation for 30 s was 51.7-58.6 A, which is 14.8-16.7 times higher than that of normal operation. Moreover, the temperature of the motor coil increased from 22.9℃ to 101℃. Based on the experimental data, we derived the temperature increase formula according to the restrained operation time by performing a regression analysis and verified the time at which the temperature exceeded the stipulated limit for the insulation grade. The findings presented in this paper can be utilized to establish fire-prevention measures and perform safety management of motors of the same type or with a similar capacity.