• 제목/요약/키워드: Driving direction

검색결과 537건 처리시간 0.031초

A STUDY ON THE MODEL-MATCHING CONTROL IN THE LONGITUDINAL AUTONOMOUS DRIVING SYSTEM

  • Kwon, S.J.;Fujioka, T.;Omae, M.;Cho, K.Y.;Suh, M.W.
    • International Journal of Automotive Technology
    • /
    • 제5권2호
    • /
    • pp.135-144
    • /
    • 2004
  • In this paper, the model-matching control in the longitudinal autonomous driving system is investigated by vehicle dynamics simulation, which contains nonlinear subcomponents and simplified subcomponents. The design of the robust model-matching controller is performed by the characteristics of the 2 degrees of freedom controller, which is composed of the feedforward compensator and the feedback compensator. It makes the characteristics of tractive and brake force to be equivalent to the specific transfer function, which is suggested as the reference model. Mathematical models of vehicle dynamic analysis including the model-matching control are constructed for computer simulation. Then, simple examples on open-loop simulation without any controller and closed loop simulation with the model-matching controller are applied to check the validity of the robust controller. As the practical example, the autonomous driving system in the longitudinal direction is adopted. It is proved that the model-matching control is effective and adequate to the disturbances and the perturbations, which are shown in the responses of the change of a vehicle mass and a road gradient.

첨단 차량 안전관리장치 운영을 통한 물류 안전관리시스템 구현 (Realization of Logistics Safety Management System By Operating Advanced Vehicle Safety Management Device)

  • 문회권;강경식
    • 대한안전경영과학회지
    • /
    • 제20권2호
    • /
    • pp.1-8
    • /
    • 2018
  • This study aims to provide a real-time information to the driver by effectively operating the advanced safety device attached to the freight vehicle, thereby minimizing insecure behavior of the driver such as speeding, rapid acceleration, sudden braking, And improve driving habits to prevent accidents and save energy. Advanced safety equipment is a device that warns the driver that the vehicle leaves the driving lane regardless of the intention of the driver and reduces the risk of traffic accidents by mitigating or avoiding collision by detecting a frontal collision during driving.The main contents of this report are as follows: In case of installing a warning device on a lane departing vehicle (excluding a light vehicle) and a lorry or special vehicle with a total weight exceeding 3.5 tonnes, the driver must continue to operate unless the driver releases the function.In addition, when the automatic emergency braking system is installed, the structure should be such that the braking device is operated automatically after warning the driver when the risk of collision with the running or stopped vehicle in the same direction is detected in front of the driving lane.

시스템 모델링 및 주행 시뮬레이션을 통한 인휠드라이브 타입 6WD/6WS 차량 플랫폼의 주행 거동 분석 (Behavior Analysis of In-wheel Drive Type 6WD/6WS Vehicle Based on System Modeling and Driving Simulation)

  • 이정엽;서승환;손웅희;유승남;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.353-360
    • /
    • 2010
  • A skid-steering method which applied to the various mobile robot platforms currently shows its effectiveness in the specified field areas and purposes. This system contains however, several problems of its intrinsic properties such as slippages occurred by different moving direction between vehicle's driving and wheel's rotary and difficulties of driving performance control and so on. This paper deals with the suggestion of suitable control algorithm for 6WD/6WS skid steering wheeled vehicle and verified its feasibility by analyzing the behavior of 6WD/6WS skid-steered wheeled vehicle model and by applying the engineering analytical method to the considered mobile platform. The Performance of vehicle model is evaluated by using slip mode control to follow the steering input and, as a future work, this control algorithm could be applied to real 6WD/6WS in-wheel drive type vehicle finally.

전차륜 조향 장치를 장착한 굴절궤도 차량의 주행특성에 관한 연구 (A Study on Dynamic Characteristic for the Bi-modal Tram with All-Wheel-Steering System)

  • 이수호;문경호;전용호;박태원;이정식;김덕기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.99-108
    • /
    • 2007
  • The bi-modal tram guided by the magnetic guidance system has two car-bodies and three axles. Each axle of the vehicle has an independent suspension to lower the floor of the car and improve ride quality. The turning radius of the vehicle may increase as a consequence of the long wheel base. Therefore, the vehicle is equipped with the All-Wheel-Steering(AWS) system for safe driving on a curved road. Front and rear axles should be steered in opposite directions, which means a negative mode, to minimize the turning radius. On the other hand, they also should be steered in the same direction, which means a positive mode, for the stopping mode. Moreover, only the front axle is steered for stability of the vehicle upon high-speed driving. In summary, steering angles and directions of the each axle should be changed according to the driving environment and steering mode. This paper proposes an appropriate AWS control algorithm for stable driving of the bi-modal tram. Furthermore, a multi-body model of the vehicle is simulated to verify the suitability of the algorithm. This model can also analyze the different dynamic characteristics between 2WS and AWS.

  • PDF

야지 고속 주행 로봇을 위한 패시브 메커니즘의 안정성 비교 분석 (Analysis for Stability for Passive Mechanisms of High Speed Mobile Robot on Rough Terrain)

  • 김영진;전봉수;김자영;이지홍
    • 로봇학회논문지
    • /
    • 제9권2호
    • /
    • pp.124-131
    • /
    • 2014
  • The robot mechanisms that were previously researched had only been conducted for the purpose of overcoming the obstacles stably at low speed driving and enhancing the stability against high speed circuitous driving, and yet, the mechanism satisfying two purposes. However, in order to stably drive with high speed on rough terrain, there is a need for satisfying both of these purposes, as well as testing the efficiency of the mechanisms at high speed driving. There, this paper simulated some of the passive mechanisms and focused on checking the performances of passive mechanisms through simulations and analyzing each mechanism on the basis of an evaluation index. The simulation was conducted by Adams (The Multi-body Dynamics Simulation Solution) and used various types of passive mechanisms which were introduced in the robotics field. As a result, the study confirmed that passive mechanisms have a number of situations that affect the driving stability on each direction of roll and pitch. Further study is needed about active mechanism.

전차륜 조향 장치를 장착한 굴절궤도 차량의 주행특성에 관한 연구 (A Study on the Dynamic Characteristics of the Bi-modal Tram with All-Wheel-Steering System)

  • 이수호;문경호;전용호;이정식;김덕기;박태원
    • 한국철도학회논문집
    • /
    • 제10권4호
    • /
    • pp.444-450
    • /
    • 2007
  • The bi-modal tram guided by the magnetic guidance system has two car-bodies and three axles. Each axle of the vehicle has an independent suspension to lower the floor of the car and improve ride quality. The turning radius of the vehicle may increase as a consequence of the long wheel base. Therefore, the vehicle is equipped with the All-Wheel-Steering(AWS) system for safe driving on a curved road. Front and rear axles should be steered in opposite directions, which means a negative mode, to minimize the turning radius. On the other hand, they also should be steered in the same direction, which means a positive mode, for the stopping mode. Moreover, only the front axle is steered for stability of the vehicle upon high-speed driving. In summary, steering angles and directions of the each axle should be changed according to the driving environment and steering mode. This paper proposes an appropriate AWS control algorithm for stable driving of the bi-modal tram. Furthermore, a multi-body model of the vehicle is simulated to verify the suitability of the algorithm. This model can also analyze the different dynamic characteristics between 2WS and AWS.

Virtual Hill 및 Sink 개념 기반의 군집 로봇의 직선 대형 주행 기법 (Cluster Robots Line formatted Navigation Based on Virtual Hill and Virtual Sink)

  • 강요환;이민철;김지언;윤성민;노치범
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.237-246
    • /
    • 2011
  • Robots have been used in many fields due to its performance improvement and variety of its functionality, to the extent which robots can replace human tasks. Individual feature and better performance of robots are expected and required to be created. As their performances and functions have increased, systems have gotten more complicated. Multi mobile robots can perform complex tasks with simple robot system and algorithm. But multi mobile robots face much more complex driving problem than singular driving. To solve the problem, in this study, driving algorithm based on the energy method is applied to the individual robot in a group. This makes a cluster be in a formation automatically and suggests a cluster the automatic driving method so that they stably arrive at the target. The energy method mentioned above is applying attractive force and repulsive force to a special target, other robots or obstacles. This creates the potential energy, and the robot is controlled to drive in the direction of decreasing energy, which basically satisfies lyapunov function. Through this method, a cluster robot is able to create a formation and stably arrives at its target.

동작 전류에 의한 Magnetic fluid Linear Pump의 동특성 해석 (Analysis of the Driving Characteristics in the Magnetic Fluid Linear Pump by Operating Current)

  • 서강;박관수
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권4호
    • /
    • pp.237-246
    • /
    • 2004
  • The advantages of the Magnetic Fluid Linear Pump(MFLP) is that this device could Pump the non-conductive. non-magnetic liquid such as Insulin or blood because of the segregation structure of the magnetic fluid and pumping liquid. In this device. the sequential currents are needed to Produce pumping forces so that Pumping Forces and Pumping speed mainly depend on the current Patterns. The excessive forces at Pumping moment could cause the medical shock, and weak forces at intermediate moment could cause the back flow or the pumping liquid. So the ripples of the pumping forces need to be reduced for the medical application. In this research, the driving characteristics in the MFLP by operating current is analysed. The change of magnetic fluid surface according to the driving currents could be obtained be magneto-hydrodynamic analysis so that Pumping fortes could be computed by integration of the surface moving to the pumping direction at each moment. The actual MFLP with 13mm diameter was made and tested for experiments. The effects of driving current and frequency on the pumping forces and pumping speed were analyzed and compared with experimental measurements.

지능형 농기계 기술 동향 (Technological Trends of Intelligent Agricultural Machinery)

  • 김환선;공소윤;이중용;임종국;김완수
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권4호
    • /
    • pp.80-91
    • /
    • 2023
  • The purpose of this study is to suggest the direction for the development of intelligent agricultural machinery technology in the Republic of Korea. For this purpose, intelligent technology of agricultural machinery was divided into autonomous agricultural machinery and tractor-implement intelligent communication technology. Then, a survey and analysis of a previous study of the Republic of Korea and foreign countries were conducted. GNSS-based autonomous driving technology is still widely used worldwide, and recently, as research on camera and LiDAR-based autonomous driving is actively progressing, autonomous driving technology is becoming more advanced. ISOBUS-based technology is being developed worldwide for intelligent control of tractor-attached implements, and major global agricultural machinery manufacturers are actively applying it to their products. However, although some ISOBUS technologies are being researched in the Republic of Korea, there are no cases of application on agricultural machinery yet. Therefore, to be globally competitive in the agricultural machinery manufacturing industry, there is an urgent need to advance autonomous driving technology and commercialize agricultural machinery using ISOBUS technology.

병렬형 하이브리드 전기자동차 구동계의 Jerk 저감 제어 (Drive-train Jerk Reduction Control for Parallel Hybrid Electric Vehicles)

  • 박준영;심현성
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.17-24
    • /
    • 2011
  • TMED(Transmission Mounted Electric Device) parallel hybrid configuration can realize EV(Electric Vehicle) mode by disengaging the clutch between an engine and a transmission-mounted motor to improve efficiencies of low load driving and regenerative braking. In the EV mode, however, jerk can be induced since there are insufficient damping elements in the drive-train. Though the jerk gives demoralizing influence upon driving comport, adding a physical damper is not applicable due to constraints of the layout. This study suggests the jerk reduction control, composed of active damping method and torque profiling method, to suppress the jerk without hardware modification. The former method creates a virtual damper by generating absorbing torque in the opposite direction of the oscillation. The latter method reduces impulse on the mated gear teeth of the drive-train by limiting the gradient of traction torque when the direction of the torque is reversed. To validate the effectiveness of the suggested strategy, a series of vehicle tests are carried out and it is observed that the amplitude of the oscillation can be reduced by up to 83%.