• Title/Summary/Keyword: Driving Voltage

Search Result 1,223, Processing Time 0.045 seconds

Optimized Gate Driving to Compensate Feed-through Voltage for $C_{ST}-on-Common$

  • Jung, Soon-Shin;Yun, Young-Jun;Park, Jae-Woo;Roh, Won-Yeol;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.73-74
    • /
    • 2000
  • In recent years, attempts have been made to greatly improve the display quality of active-matrix liquid crystal display devices, and many techniques have been proposed to solve such problems as gate signal delay, feed-through voltage and image sticking[1-3]. To improve these problems which are caused by the feed-through voltage, we have evaluated new driving methods to reduce the feed-through voltage. Two level gate-pulse was used for the gate driving of the cst-on-common structure pixels. These gate driving methods offer better feed-through characteristics than conventional simple gate pulse. Optimized step signal will compensate by step pulse time and voltage. The evaluation of the suggested driving methods were performed by using a TFT-LCD array simulator PDAST which can simulate the gate, data and pixel voltages of a certain pixel at any time and at any location on a TFT array. The effect of the new driving method was effectively analyzed.

  • PDF

Voltage Feedback AMOLED Display Driving Circuit for Driving TFT Deviation Compensation (구동 TFT 편차 보상을 위한 전압 피드백 AMOLED 디스플레이 구동 회로)

  • Ki Sung Sohn;Yong Soo Cho;Sang Hee Son
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.161-165
    • /
    • 2023
  • This paper designed a voltage feedback driving circuit to compensate for the characteristic deviation of the Active Matrix Organic Light Emitting Diode driving Thin Film Transistor. This paper describes a stable and fast circuit by applying charge sharing and polar stabilization methods. A 12-inch Organic Light Emitting Diode with a Double Wide Ultra eXtended Graphics Array resolution creates a screen distortion problem for line parasitism, and charge sharing and polar stabilization structures were applied to solve the problem. By applying Charge Sharing, all data lines are shorted at the same time and quickly positioned as the average voltage to advance the compensated change time of the gate voltage in the next operation period. A buffer circuit and a current pass circuit were added to lower the Amplifier resistance connected to the line as a polar stabilization method. The advantage of suppressing the Ringing of the driving Thin Film Transistor can be obtained by increasing the stability. As a result, a circuit was designed to supply a stable current to the Organic Light Emitting Diode even if the characteristic deviation of the driving Thin Film Transistor occurs.

  • PDF

2.5MHz Zero-Voltage-Switching Resonant Inverter for Electrodeless Fluorescent Lamp (무전극 램프 점등용 2.5MHz급 ZVS 인버터 개발에 관한 연구)

  • 박동현;김희준;조기연;계문호
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.261-265
    • /
    • 1997
  • Driving the electrodeless fluorescent lamp, the high ac voltage with high frequency is required. The linear power amplifier has been widely used as a driving circuit of electrodeless fluorescent lamp. However, the low efficiency of the power amplifier causes th driving circuit to be replaced by a PWM switching inverter. In order to use a PWM switching inverter as the driving circuit of an electrodeless fluorescent lamp, the high switching frequency is required. But due to the switching loss at switches of the inverter, the limitation of high switching frequency appears in the inverter. One solution to this limitation is to reduce the switching loss by using the zero voltage switching technique. In this paper, zero voltage switching resonant inverter for driving an electrodeless fluorescent lamp is discussed. The results of analysis about the inverter are presented and the equations for design are established. And the validity of the analyzed results are verified through the experiment.

  • PDF

Electrical properties of multilayer piezoelectric transformer (적층압전변압기의 전기적 특성)

  • 정수태;조상희
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.138-145
    • /
    • 1996
  • A multilayer piezoelectric transformer (MPT) which generates a high voltage dc power with low driving voltage and high voltage setup ratio was made by the tape casting method. The measured electrical characteristics of the MPT agreed with the results simulated from the equivalent circuit of the MPT. With increasing the number of layer in the MPT, the resonance curve of the input cur-rent revealed an asymmetry due to the increasing input capacitance, while that of output dc voltages revealed symmetry. The MPT which has very thin layer was excellently characterized as low driving voltage and high voltage setup ratio. The output dc voltage is nonlinearly influenced by the number of layer in the MPT.

  • PDF

Electroluminescent Characteristics of Fluorescent OLED with Alternating Current Forward Bias (교류 순방향 바이어스에 따른 형광 OLED의 전계 발광 특성)

  • Seo, Jung-Hyun;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.398-404
    • /
    • 2017
  • In order to study the AC driving mechanism for OLED lighting, the fluorescent OLEDs were fabricated and the electroluminescent characteristics of the OLEDs by AC forward bias were analyzed. In the case of the driving method of OLED by AC forward bias under the same voltage and the same current density, degradation of luminescent characteristics for elapsed time progressed faster than in the case of the driving method by DC bias. These phenomena were caused by the peak voltage of AC forward bias which is ${\sqrt{2}}$ times higher than the DC voltage. In addition, the degradation of the OLED was accelerated because the AC forward bias had come close to the upper limit of the allowable voltage range even though the peak voltage didn't exceed the allowable range of the OLED. However, the fabricated fluorescent OLED showed little degradation of OLED characteristics due to AC forward bias from 0 V to 6.04 V. Therefore, OLED lighting by AC driving will become commercialized if sufficient luminance is realized at a voltage at which the characteristics of the OLED are not degradation by the AC driving method.

Requirements for Improvement in Transmission Performance for an Optical Delay Interferometer based Optical Duobinary Transmitters (광 간섭계를 이용한 광 듀오바이너리 송신기의 전송 성능 향상에 관한 조건 연구)

  • Lee, Dong-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.119-123
    • /
    • 2010
  • The transmission performance of 10Gb/s optical duobinary transmitters implemented by using a Mach-Zehnder(MZ) modulator and an optical delay interferometer is presented. We investigated the theoretical impact of transmission systems by the modulator driving voltage ratio(=driving voltage/switching voltage) and the optical interferometer time delay to improve transmission distance using computer simulation. By reducing the driving voltage ratio and optimizing the partial bit time delay, the transmission performance has been improved greatly.

Low voltage driving white OLED with new electron transport layer (New ETL 층에 의한 저전압 구동 백색 발광 OLED)

  • Kim, Tae-Yong;Suh, Won-Kyu;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.100-101
    • /
    • 2008
  • We have developed low voltage driving white organic light emitting diode with new electron transport layer. The with light emission was realized with a yellow dopant, rubrene and blue-emitting DPVBi layer. The new electron transport layer results in very high current density at low voltage, causing a reduction of driving voltage. The device with new electron transport layer shows a brightness of 1000 cd/m2 at 4.3 V.

  • PDF

New Fabrication Approach for Low Voltage Driving Electrophoretic Display

  • Park, Young-Mi;Kim, Do-Yun;Cho, Young-Tae;Lee, Yong-Eui;Kim, Chul-Hwan;Yoon, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.893-895
    • /
    • 2009
  • In this paper, we described the unique and novel method to prepare two kinds of electro-active particles, black and white particles with different polarity. The surface of the particles was characterized to be uniform and clean by adopting spray dryer as a tool for genesis of particles; neither surfactants nor high dielectric medium like water was employed during particle preparation step. The other purpose of this study is to investigate the factors that contribute high driving voltage of particlebased display like QR-LPD. We extracted parameters interaction between particle and electrode, and between oppositely charged particles. Here we reported an excellent behavior of particle-based display that showed low operating voltage, high contrast ratio as high as 8:1 without scarification of quick response time. By optimizing the particle size, charge per mass, selection of external additive sets, a lower driving voltage as low as 40V for the particles with $10{\mu}m$ volume average diameter was obtained.

  • PDF

The Driving Method of a Charged Particle Type Display (대전입자헝 디스플레이의 구동방식)

  • Kwon, Ki-Young;Kim, Sung-Woon;Hwang, In-Sung;Kim, Young-Cho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • In this paper, fundamental driving method and selective driving each cells of charged particle type display are described. To fabricate panel, mask patterns with cell area of $500{\mu}m{\times}500{\mu}m$ are designed. Gain of driving voltage due to increase of cell gap is observed on the basis of fundamental driving method. To selectively drive each cells of charged particle type display that is driven by passive matrix method, selective driving of charged particle type display is achieved after establishing interrelation of voltage of select cell and unselect. And than crosstalk of the driven panel is observed. It can be found that the last image is maintained without additional voltage by memory effect.