• Title/Summary/Keyword: Driving Gear

Search Result 297, Processing Time 0.029 seconds

A study on dual mass flywheel for a jeep vehicle with Diesel Engine (디젤엔진을 탑재한 짚차량의 2분할 플라이휠에 관한 연구)

  • 정종안;조찬기
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.17-22
    • /
    • 1997
  • This paper reals with the structure and function of duel mass flywheel. Damping effects of engine rotational fluctuation are compared with those of pre-damper clutch and duel mass flywheel and driven- system behavior is estimated engine idle r.p.m. The reason of gear rattle noise is higher in summer than winter and driving longer period than initial driving is due to affection by drag torque changing. The above-contents can be used on the design of clutch system and transmission matching including engine and duel mass flywheel.

  • PDF

Case Studies on Beating Phenomena of Hydraulic Couplings (유체 커플링의 맥놀이 현상 사례 연구)

  • 최성필;박종포;김호종
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.133-138
    • /
    • 1997
  • Belt-conveyer driving systems, which transport coal stored in the yard of a coal-fired fossil power plant to coal silos, experienced severe vibrations. From measurement, it was found that the vibrations showed beating phenomenoa and arose from hydraulic couplings installed between motors and gear boxes. In the present paper, described are results of case studies on vibration troubleshooting for the belt-conveyor driving systems: 1)resonance of the system; 2)field balancing.

  • PDF

Design and Control of Haptic Cue Device for Accelerator Pedal Using MR Brake (MR 브레이크를 이용한 햅틱 큐 가속페달 장치 설계 및 제어)

  • Noh, Kyung-Wook;Han, Young-Min;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.516-522
    • /
    • 2009
  • This paper proposes a new haptic cue vehicle accelerator pedal device using magnetorheological(MR) brake. As a first step, an MR fluid-based haptic cue device is devised to be capable of rotary motion of accelerator pedal. Under consideration of spatial limitation, design parameters are optimally determined to maximize control torque using finite element method. The proposed haptic cue device is then manufactured and integrated with accelerator pedal. Its field-dependant torque is experimentally evaluated. Vehicle system emulating gear shifting and engine speed is constructed in virtual environment and communicated with the haptic cue device. Haptic cue algorithm using the feed-forward control algorithm is formulated to achieve optimal gear shifting in driving. Control performances are experimentally evaluated via feed-forward control strategy and presented in time domain.

Improving Vehicle Driving Stability by Controlling CVT and Brake Force (CVT 및 BrakeForce 제어를 통한 차량 주행 안정성 향상)

  • 조현욱;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.305-308
    • /
    • 2002
  • The mechanics, electronics and manufacturing technology have been developed rapidly. Nowadays vehicle stability becomes more and more important then ABS (Anti-lo7k Brake System), ASR (Anti-Slip Regulator), TCS, (Traction Control System), ESP (Electronic Stability Program), and VDC (Vehicle Dynamic Control) which actively control the vehicle stability actively has been improved. In this study, instead of automatic transmission, CVT (Continuously Variable Transmission) is used because of the continuously gear ratio changes. It can effectively transfer the torque from engine to tire more than other gear transmission. The modeling is simplified assuming that there are no resistance parameters.

  • PDF

Design and Control of Haptic Cue Device for Accelerator Pedal Using MR Brake (MR 브레이크를 이용한 햅틱 큐 가속페달 장치 설계 및 제어)

  • Noh, Kyung-Wook;Han, Young-Min;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.627-632
    • /
    • 2009
  • This paper proposes a new haptic cue vehicle accelerator pedal device using magnetorheological (MR) brake. As a first step, an MR fluid-based haptic cue device is devised to be capable of rotary motion of accelerator pedal. Under consideration of spatial limitation, design parameters are optimally determined to maximize control torque using finite element method. The proposed haptic cue device is then manufactured and integrated with accelerator pedal. Its field-dependant torque is experimentally evaluated. Vehicle system emulating gear shifting and engine speed is constructed in virtual environment and communicated with the haptic cue device. Haptic cue algorithm using the feed-forward control algorithm is formulated to achieve optimal gear shifting in driving. Control performances are experimentally evaluated via feed-forward control strategy and presented in time domain.

  • PDF

A Study on Noise Reduction for the Driving System of a Forklift (지게차 구동부의 소음 진동 저감에 대한 연구)

  • Kim, Woo-Hyung;Hong, Il-Hwa;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.80-86
    • /
    • 2008
  • In this study. the noise sources were identified and the noise and vibration were reduced for an industrial forklift. To identify the noise sourses, noise signals were measured by a microphone on a driver seat and these signals were analyzed with a waterfall plot. For this purpose, the gear mesh frequencies from the gear box of a reducer were not only investigated but noise/vibration sourses of an electric motor were also examined. Furthermore, the frequency response functions were obtained to confirm the vibration and noise sourses. It was found that severe vibration and noise were generated in the casing and the connecting part of the reducer. The severe vibration and noise could be reduced by a structure modification.

Rotordynamic Analysis of a Turbo-Chiller with Varying Gear Loadings Part II : A Driven High-Speed Compressor Pinion-Impeller Rotor-Bearing System (터보 냉동기의 변동 기어하중을 고려한 로터다이나믹 해석 Part II : 피동 고속 압축기 피니언-임펠러 로터-베어링 시스템)

  • 이안성;정진희
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1042-1049
    • /
    • 1999
  • In the Part I has been reported a rotordynamic analysis of the driving motor-bull gear rotor-bearing system of a turbo-chiller. In this study, Part II, a rotordynamic analysis is performed with the turbo-chiller compressor pinion-impeller rotor system supported on two fluid film bearings. The pinion-impeller rotor system is driven to a rated speed of 14,600 rpm through a speed-increasing pinion-bull gear. It is modeled utilizing the finite element method for analysis. As loadings on the bearings due to the gear action are significant in the system considered, each resultant bearing load is calculated statically by considering the generalized forces of the gear action as well as the rotor itself. The two support bearings, the generalized forces of the gear action as well as the rotor itself. The two support bearings, partial and 3-axial groove bearings, are designed to take their varying loads along with their varying load angles, and they are also analyzed to give their rotordynamic coefficients. Then, a complex rotordynamic analysis of the compressor pinion-impeller rotor-bearing system is carried out to evaluate its stability, whirl natural frequencies and mode shapes, and unbalance responses under various loading conditions. Results show that the bearings and entire rotor system are well designed regardless of operating conditions, i.e., loads and operating speeds.

  • PDF

Vibration and Noise Measurement on the Driving System of Electric Train for Safety Diagnosis (전기동차 구동장치의 안전진단을 위한 진동.소음 측정)

  • 최연선;이봉현;최경긴;유원희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.210-215
    • /
    • 1997
  • Safety diagnosis on the driving system of electric train is performed using the vibration and noise signals of running railway train. Safety diagnosis is tried on the viewpoints of the appreciation of superannuation and the fault diagnosis of motor, reduction gear and boggie. The appreciation of superannuation is checked by the rms vibration levels of driving parts and the fault diagnosis is done by analyzing the frequencies of the vibration signals. The methods of measuring and analyzing the signals are decided on the basis of field 1-measured signals. The results shows that the vibration levels of each parts increase as the train goes older and each parts have their own frequency patterns of the vibration. As the results, the vibration and noise can be utilized successfully for the safety diagnosis of the driving part of electric train.

  • PDF

Vibration Suppression Control for a Geared Mechanical System;Simulation Study on Vibration Suppression Effects Using a Model-Based Control with a Rotational Speed Sensor

  • Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.694-699
    • /
    • 2005
  • This paper deals with a control technique of eliminating the transient vibration of a geared mechanical system. This technique is based on a model-based control with a rotational speed sensor in order to establish the damping effect at the driven machine part. A rotational speed sensor is installed in a driven gear, namely a bull gear. A control model is composed of a reduced-order mechanical part expressed as a transfer function between the rotational speed of the motor and that of the bull gear. This control model estimates a load speed after the rotational speed of the bull gear is acted on the transfer function. The difference between the estimated load speed and the motor speed is calculated dynamically and it is added to the velocity command to suppress the transient vibration generated at the load. This control technique is applied to a dies driving spindle of a form rolling machine. In this paper, the performance of this control method is examined by simulations. The settling time of the residual vibration generated at the loading inertia can be shortened down to about 1/2 of the uncompensated vibration level.

  • PDF