• 제목/요약/키워드: Driving Force

검색결과 1,481건 처리시간 0.022초

캠구동 슬라이더기구의 기구동역학 해석에 관한 연구 (A Study on the Kinetodynamic Analysis for General Disk Cam Driving Slider Mechanisms)

  • 신중호;김종수;하경훈
    • 대한기계학회논문집A
    • /
    • 제21권6호
    • /
    • pp.871-883
    • /
    • 1997
  • Kinetodynamics of a cam driving slider mechanism consists of kinematic analysis and force analysis. The kinematic analysis is to determine the kinematic characteristics of a cam driving mechanism and a slider mechanism. The force analysis is to determine the joint forces of links, the contact forces of the cam and follower, and the driving torque of a main shaft. This paper proposes a close loop method and a tangent substitution method to formulate the relationships of kinematic chains and to calculate the displacement, velocity and acceleration of the cam driving slider mechanism. Also, and instant velocity center method is proposed to determine the cam shape from the geometric relationships of the cam and the roller follower. For dynamic analysis, the contact force and the driving torque of the cam driving slider mechanism are calculated from the required sliding forces, sliding motion and weight of the slider.

PWM 구동방식을 이용한 초음파 모터의 힘/ 토크제어 (Force/Torque Control of Ultrasonic Motor with PWM Driving Method)

  • 최병현;최혁렬
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2723-2731
    • /
    • 2000
  • Ultrasonic motors(USM) has been emerging as one type actuators, which possess many advantages such as high torque, low weight, compact size and no magnetic field generation. In spite of these features, there are several problems to be solved, which are temperature rise in case of long term operation, non -linearity, and hysteresis. Among these, hysteresis cause the most serious problem in force/torque control applications. To cope with this paper we propose a new PWM driving method which can be applied to force/torque control applications. To cope with this problem, in this paper we propose a new PWM driving method which can applied to force/torque control of USM. To verify the proposed method, an experimental setup was built and several experiments were performed.

Displacement Characteristics of a Parallel Leaf Spring Mechanism with Large-Deflective Elastic Hinges for Optical Mount

  • Kim, Kwang;Mikio Horie;Teruya Sugihara
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.484-489
    • /
    • 1998
  • In this paper, we examine the displacement characteristics of the parallel leaf spring mechanism with large-deflective elastic hinges, and the validity of this mechanism as a translational and rotational mechanism is confirmed with multi-input system. This study is focused on the linear driving force as an input force, which is applied to the large-deflective elastic mechanism, and the displacement characteristics are discussed with theoretically and experimentally. The motions of this mechanism due to large-deflective hinges are changed by the position of loading force regardless of a single driving force. The numbers of degree of freedom are increased with the hinges, and we can be used to a multiple driving force in order to obtain many types of Output.

  • PDF

A Novel Nonmechanical Finger Rehabilitation System Based on Magnetic Force Control

  • Baek, In-Chul;Kim, Min Su;Kim, Sung Hoon
    • Journal of Magnetics
    • /
    • 제22권1호
    • /
    • pp.155-161
    • /
    • 2017
  • This paper presents a new nonmechanical rehabilitation system driven by magnetic force. Typically, finger rehabilitation mechanisms are complex mechanical systems. The proposed method allows wireless operation, a simple configuration, and easy installation on the hand for active actuation by magnetic force. The system consists of a driving coil, driving magnets (M1), and auxiliary magnets (M2 and M3), respectively, at the finger, palm, and the center of coil. The magnets and the driving coil produce three magnetic forces for an active motions of the finger. During active actuations, magnetic attractive forces between M1 and M2 or between M1 and M3 enhance the flexion/extension motions. The proposed system simply improves the extension motion of the finger using a magnetic system. In this system, the maximum force and angular variation of the extension motion were 0.438 N and $49^{\circ}$, respectively. We analyzed the magnetic interaction in the system and verified finger's active actuation.

Estimation of Vehicle Driving-Load with Application to Vehicle Intelligent Cruise Control

  • Kyongsu Yi;Lee, Sejin;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.720-726
    • /
    • 2001
  • This paper describes a vehicle driving-load estimation method for application to vehicle Intelligent Cruise Control (ICC). Vehicle driving-load consists of aerodynamic force, rolling resistance, and gravitational force due to road slope and is unknown disturbance in a vehicle dynamic model. The vehicle driving-load has been estimated from engine and wheel speed measurements using a vehicle dynamic model a least square method. The estimated driving-load has been used in the adaptation of throttle/brake control law. The performance of the control law has been investigated via both simulation and vehicle tests. The simulation and test results show that the proposed control law can provide satisfactory vehicle-to-vehicle distance control performance for various driving situations.

  • PDF

직접 구동형 OHC 밸브 트레인 시스템의 마찰 특성 (The Characteristics of Friction in Direct Acting OHC Valve Train System)

  • 한동철;조명래
    • Tribology and Lubricants
    • /
    • 제14권1호
    • /
    • pp.23-27
    • /
    • 1998
  • The characteristics of friction in direct acting OHC vane train system have been investigated by the comparison of experimental and theoretical results. A modified friction model was presented to calculate the friction force at cam/tappet contact. A simple experimental system was evaluated to measure the friction force and the camshaft driving torque. The friction force was measured by using the dynamic loadcell. Good agreement was found between theoretical and experimental results in friction force, but there was a little difference in driving torque.

타이어 내부 표면 변형량을 이용한 타이어 수직하중 실시간 추정 알고리즘 개발 (Development of Tire Vertical Force Estimation Algorithm in Real-time using Tire Inner Surface Deformation)

  • 이재훈;김진오;허승진
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.142-147
    • /
    • 2013
  • Over the past few years, intelligent tire is developed very actively for more accurate measurement of real-time tire forces generated during vehicle driving situation. Information on the force of intelligent tire could be used very usefully to chassis control systems of a vehicle. Intelligent tire is based on deformation of tire's inner surface from the waveform of a SAW, or Surface Acoustic Wave. The tire vertical force is estimated by using variance analysis of sensor signals. The estimated tire vertical force is compared with the tire vertical force generated during vehicle driving situation in real-time environment. The scope of this paper is a correlation study between the measured sensor signals and the tire vertical force generated during vehicle driving situation.

TBM 진행에 따른 라이닝 세그먼트 균열 원인 분석 (Cracking Reason Analysis of Concrete Lining Segment with TBM Driving)

  • 김문겸;장경국;원종화;김태민
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.624-629
    • /
    • 2008
  • When TBM excavates a tunnel, existing concrete lining segments are used as supporting structures for driving force. Axial stress on the lining segments are apt to be large in case of direct driving force. However, it drastically decline as it is farther and father from TBM and later, it tends to converge after a certain point. Such tendencies show similar results of finite element analysis. At the initial intervals, the values of finite element analysis are larger, while at the later intervals, the actual stress values are larger. It concludes that such tendencies are attributable to that the concrete lining segments have partially burst and cracked in the axial direction at the initial intervals. And differences of stresses at the later intervals are created by the changed plasticity of ground and the friction on the external sides of the lining segments.

  • PDF

배선용 차단기(MCCB) 구동용 전자석 조작기(EMFA) 설계 (Design of Electromagnetic Force driving Actuator for Molded Case Circuit Breaker)

  • 김래은;강종호;곽상엽;정현교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.29-31
    • /
    • 2008
  • Recent years have witnessed that the Korean government prompts the 'Power IT' enterprise to combine electric Power industry with information technology (IT). Especially, in a move to shore up the distribution automation system, the necessity for remote control of molded case circuit breaker (MCCB) is getting more and more important. In this paper, we aimed to propose a remote-controlled MCCB of which the driving device is substituted to electrical equipment for mechanical parts. Driving device of MCCB was designed with the Electromagnetic Force driving Actuator (EMFA). Electromagnetic force and dynamic characteristics of the designed EMFA are analyzed using 2-D finite element method (FEM).

  • PDF

기존선을 통과하는 고속차량의 적절한 주행속도에 관한 연구 (A Study on Appropriate Driving Speed for High-Speed Trains Running the Conventional Line)

  • 함영삼
    • 한국정밀공학회지
    • /
    • 제31권9호
    • /
    • pp.773-776
    • /
    • 2014
  • KTX (Korea Train eXpress) is the first high-speed train operated in Korea and its highest speed reaches 300 km/h. Korean high-speed trains are mostly operated on the railroads exclusively designed for high-speed trains, but the sections of Seoul~Gwangmyeong, nearby of Daejeon station and Dongdaegu are operated on the existing tracks having the speed less than 150 km/h. With this paper, we'd like to analyze the lateral force that occurs between the wheels and the rail when high-speed trains were operated on the existing track section to suggest an appropriate driving speed for high-speed trains. As the rigid wheel base of the high-speed train is 3m which is about 50% longer than normal vehicles, it works as an advantage for high-speed driving. However, as the lateral force becomes higher than normal vehicles when driving on curves, plans to reduce wear-outs on the wheels are required.