• Title/Summary/Keyword: Driving Efficiency

Search Result 1,154, Processing Time 0.029 seconds

The Efficiency Characteristics of Electric Vehicle (EV) According to the Diverse Driving Modes and Test Conditions (다양한 주행모드 및 시험 조건에 따른 전기자동차 효율 특성)

  • LEE, MIN-HO;KIM, SUNG-WOO;KIM, KI-HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.56-62
    • /
    • 2017
  • Although most electricity production contributes to air pollution, the vehicle organizations and environmental agency categorizes all EVs as zero-emission vehicles because they produce no direct exhaust or emissions. Currently available EVs have a shorter range per charge than most conventional vehicles have per tank of gas. EVs manufacturers typically target a range of 160 km over on a fully charged battery. The energy efficiency and driving range of EVs varies substantially based on driving conditions and driving habits. Extreme outside temperatures tend to reduce range, because more energy must be used to heat or cool the cabin. High driving speeds reduce range because of the energy required to overcome increased drag. Compared with gradual acceleration, rapid acceleration reduces range. Additional devices significant inclines also reduces range. Based on these driving modes and climate conditions, this paper discusses the performance characteristics of EVs on energy efficiency and driving range. Test vehicles were divided by low / high-speed EVs. The difference of test vehicles are on the vehicle speed and size. Low-speed EVs is a denomination for battery EVs that are legally limited to roads with posted speed limits as high as 72 km/h depending on the particular laws, usually are built to have a top speed of 60 km/h, and have a maximum loaded weight of 1,400 kg. Each vehicle test was performed according to the driving modes and test temperature ($-25^{\circ}C{\sim}35^{\circ}C$). It has a great influence on fuel efficiency amd driving distance according to test temperature conditions.

Electroluminescence Characteristics of OLED by Full-Wave Rectification Alternating Current Driving Method (전파 정류 교류 구동 방식에 의한 OLED의 전계발광 특성)

  • Seo, Jung-Hyun;Ju, Sung-Hoo
    • Korean Journal of Materials Research
    • /
    • v.32 no.7
    • /
    • pp.320-325
    • /
    • 2022
  • Single OLED and tandem OLED was manufactured to analyze the electroluminescence characteristics of DC driving, AC driving, and full-wave rectification driving. The threshold voltage of OLED was the highest in DC driving, and the lowest in full-wave rectification driving due to an improvement of current injection characteristics. The luminance at a driving voltage lower than 10.5 V (8,534 cd/m2) of single OLED and 20 V (7,377 cd/m2) of a tandem OLED showed that the full-wave rectification drive is higher than that of DC drive. The luminous efficiency of OLED is higher in full-wave rectification driving than in DC driving at low voltage, but decrease at high voltage. The full-wave rectification power source may obtain higher current density, higher luminance, and higher current efficiency than the AC power source. In addition, it was confirmed that the characteristics of AC driving and full-wave rectification driving can be predicted from DC driving characteristics by comparing the measured values and calculated values of AC driving and full-wave rectification driving emission characteristics. From the above results, it can be seen that OLED lighting with improved electroluminescence characteristics compared to DC driving is possible using full-wave rectification driving and tandem OLED.

The Test Study on Driving Efficiency Improvement of Two-wheeled Electric Vehicle according to Regenerative Braking (전기 동력 이륜차의 회생제동에 따른 구동효율 향상에 관한 평가 연구)

  • Cho, Suyeon;Seo, Donghyun;Park, Junsung;Shin, Waegyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.635-641
    • /
    • 2016
  • Regenerative braking performance of an electrically powered vehicle is closely related to driving distance per battery charge. An electric vehicle uses appropriate amounts of mechanical braking force and electromagnetic regenerative braking force to recover energy and increase driving efficiency. In particular, when it drives on a downhill road, energy recovery rate is maximized through regenerative braking during coasting based on the mass inertia of the vehicle. Since an electric two-wheeled vehicle covered in this paper is lighter than an electric four-wheeled vehicle, the improvement of its driving distance per battery charge through regenerative braking is different from an electric four-wheeled vehicle. This study compared the driving characteristics of an electric two-wheeled vehicle based on regenerative braking. Two driving test modes were simulated with a chassis dynamometer system. By analyzing the measurement of a chassis dynamometer, the driving characteristics of a two-wheel electric vehicle, such as driving efficiency, were analyzed. In addition, test results were reviewed to draw the limitations of conventional test methods for regenerative braking performance of an electric two-wheel vehicle.

Analysis of GHG Reduction Potential on Road Transportation Sector using the LEAP Model - Low Carbon Car Collaboration Fund, Fuel Efficiency, Improving Driving Behavior - (LEAP 모형을 이용한 도로교통부문의 온실가스 감축잠재량 분석 - 저탄소차협력금제도, 연비강화, 운전행태개선을 중심으로 -)

  • Kim, Min wook;Yoon, Young Joong;Han, Jun;Lee, Hwa Soo;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.85-93
    • /
    • 2016
  • This study the efficiency of greenhouse gas reduction of 'low carbon car collaboration fund' and its alternative 'control of average fuel efficiency and greenhouse gas', and 'improving driving behavior' were analyzed by using LEAP, long term energy analysis model. Total 4 scenarios were set, baseline scenario, without energy-saving activity, 'low carbon car collaboration fund' scenario, 'fuel efficiency improving scenario', and 'improving driving behavior' scenario. The contents of analysis were forecast of energy demand by scenario and application as well as reduction of greenhouse gas emission volume, and the period taken for analysis was every 1 year during 2015~2030. Baseline scenario, greenhouse gas emission volume in 2015 would be 7,935,697 M/T and 13,081,986 M/T in 2030, increased 64.8%. The analysis result was average annual increase rate of 3.4%. The expected average annual increase rate of other scenarios was, 'low carbon car collaboration fund' scenario 1.7%, 'fuel efficiency improving' scenario 3.0%. and 'improving driving behavior' scenario 3.4%. and these were each 1.7%, 0.3%. 0.3% reduce from baseline scenario. The largest reduction was 'low carbon car collaboration fund' scenario, and there after were 'fuel efficiency improving scenario', and 'improving driving behavior' scenario.

Auxiliary Address Pulse Driving Scheme for Improving Luminance and Luminous Efficiency in 42-inch WVGA Plasma Display Panel

  • Park, Ki-Hyung;Lee, Eun-Cheol;Cho, Ki-Duck;Tae, Heung-Sik
    • Journal of Information Display
    • /
    • v.5 no.1
    • /
    • pp.16-21
    • /
    • 2004
  • The effects of an auxiliary address pulse driving scheme, in which an auxiliary short pulse is applied to the address electrode during a sustain-period, were examined under the various image patterns of the 42-inch WVGA ac-PDP. When the auxiliary address pulse driving scheme was applied, the luminance of the red, green and blue cells were measured respectively. And the luminance, luminous efficiency, and current were measured under the full-white pattern of the 42-inch ac-PDP. As a result, the luminance of blue cells was improved approximately by 17 %, whereas the luminous efficiency of the full-white pattern was improved approximately by 34 % without a misfiring discharge in comparison with conventional driving scheme.

Analysis on Efficiency Characteristics of IPMSM for fuel Economy Improve of Electric Vehicle (전기자동차의 연비향상을 위한 매입형 영구자석 동기전동기의 효율특성 분석)

  • Kim, Jong-Hee;Kim, Ki-Chan;Lee, Dae-Dong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • Electric motors for electric vehicles differ in efficiency characteristics depending on the operation modes, studies for evaluating high efficiency characteristics in low speed and high speed operation modes are very important. Therefore, it is necessary to design method that can change the high torque, high output density, and high efficiency characteristics of driving motors for electric vehicles. In this paper, the diameter ratio of stator and rotor for the interior permanent magnet synchronous motor is change of designed 0.62, 0.65, and 0.68, respectively, and the efficiency characteristics of the entire operation section, average efficiency characteristics of the city driving modes and express highway driving modes are analyzed. As a result of analyzing the efficiency characteristics of the entire operating section, it was confirmed that as the diameter ratio increases, the high efficiency section moves to the low speed and low torque section and the high efficiency section moves to the high speed and low torque neighborhood as the diameter ratio decreases. As a result of analyzing the average efficiency characteristics in the city driving modes and express highway driving modes, the average efficiency of 0.68 model is analyzed to be more efficient than the 0.63 and 0.65 model ratio, and it is confirmed that it is suitable for city driving modes and express highway driving modes.

LED Driving Circuit using Charge Pump for Voltage Distribution (전압 분배용 전하펌프를 사용한 LED 구동회로)

  • Yun, Jang-Hee;Yoo, Sung-Ho;Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper, a new LED driving circuit which is able to control dimming of LED is proposed using charge pump. The proposed LED driving circuit steps down the input voltage to operate LED without DC-DC converter. The operation of this driving circuit is verified by P-Spice simulation, and the characteristics of the driving circuit is measured and evaluated in the experiments. As a result, the driving circuit efficiency of 88.5[%] is obtained when all LEDs are turned on by digital control method at the highest dimming level(255/255).

Optimization of Bidirectional DC/DC Converter for Electric Vehicles Based On Driving Cycle

  • Yutao, Luo;Feng, Wang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1934-1944
    • /
    • 2017
  • As a key component of high-voltage power conversion system for electric vehicles (EVs), bidirectional DC/DC (Bi-DC/DC) is required to have high efficiency and light weight. Conventional design methods optimize the Bi-DC/DC at the maximum power dissipation point (MPDP). For EVs application, the work condition of the Bi-DC/DC is not strict as the MPDP, where the design method using MPDP may not be optimal during travel of EVs. This paper optimizes the Bi-DC/DC converter targeting efficiency and weight based on the driving cycle. By analyzing the two-phase interleaved Bi-DC/DC for hybrid energy storage systems (HESS) of EVs, its power dissipation is calculated, and an efficiency model is derived. On this basis, weight models of capacitor, inductor and heat sink are built, as well as a dynamic temperature model of heat sink. Based on these models, a method using New European Driving Cycle (NEDC) for optimal design of Bi-DC/DC which simultaneously considered efficiency and weight is proposed. The simulation result shows that compare with conventional optimization methods revealed that the optimization approach based on driving cycle allowed significant weight reduction while meeting the efficiency requirements.

Core Loss Effects on Electrical Steel Sheet of Wound Rotor Synchronous Motor for Integrated Starter Generator

  • Lee, Choong-Sung;Kim, Ji-Hyun;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.148-154
    • /
    • 2015
  • 48-V ISG (Integrated Starter Generator) system has attracted attention to improve the fuel efficiency of ICE (Internal Combustion Engine) vehicle. One of the key components that significantly affects the cost and performance of the 48-V ISG system is the motor. In an ISG motor, the core and copper loss make the motor efficiency change because the motor has a broad driving operated range and more diverse driving modes compared with other motors. When designing an ISG motor, the selection of an electrical steel sheet is important, because the electrical steel sheet directly influences the efficiency of the motor. In this paper, the efficiency of the ISG motor, considering core loss and copper loss, is analyzed by testing different types of electrical steel sheets with respect to the driving speed range and mode. Using the results of a finite element method (FEM) analysis, a method to select the electrical steel sheet is proposed. This method considers the cost of the steel sheet and the efficiency according to driving mode frequency during the design process of the motor. A wound rotor synchronous machine (WRSM) was applied to the ISG motor in this study.

Characteristics of Driving Efficiency and Bearing Capacity for Long Steel Pipe Pile Method without Welding (무용접 장대강관말뚝 공법의 항타 및 지지력 특성)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.235-241
    • /
    • 2000
  • The existing methods for installation of long steel pipe pile have some uneconomical problems such as increase of installation cost and period due to the welding of two piles and removal of soil plug, and decrease of driving efficiency due to the increase of driving resistance resulting from time effect during the welding of piles and removal of soil plug, etc. Thus, in this study, new installation method for long steel pipe pile is suggested to solve the existing problems, and calibration chamber tests were performed to investigate both driving and economical efficiency for the suggested method. The test results showed that the new method increased bearing capacity, and decreased the installation cost and period for long steel pipe piles compared with existing methods.

  • PDF